Show that $sumlimits_{n=1}^{infty}left(frac{a_{n+1}}{a_n}-1right)$ converges.
$begingroup$
$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:
begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}
converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...
The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!
Thanks for your help in advance.
Best Regards,
Ahmed Hossam
real-analysis calculus sequences-and-series real-numbers
$endgroup$
|
show 4 more comments
$begingroup$
$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:
begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}
converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...
The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!
Thanks for your help in advance.
Best Regards,
Ahmed Hossam
real-analysis calculus sequences-and-series real-numbers
$endgroup$
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28
|
show 4 more comments
$begingroup$
$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:
begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}
converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...
The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!
Thanks for your help in advance.
Best Regards,
Ahmed Hossam
real-analysis calculus sequences-and-series real-numbers
$endgroup$
$(a_n)$ is a sequence of strictly increasing positive numbers and has a lower as well as an upper bound. The question is, if the partial sum:
begin{align*}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)&=left(frac{a_{1+1}}{a_1}-1right)+left(frac{a_{2+1}}{a_2}-1right)+cdots +left(frac{a_{k+1}}{a_k}-1right)\&=frac{a_2}{a_1}+frac{a_3}{a_2}+cdots +frac{a_{k+1}}{a_k}-k.end{align*}
converges? Because $(a_n)$ is a sequence of strictly increasing positive numbers, we have $a_{n+1}>a_n$ for all $n$. Because $(a_n)$ is bounded, we have an upper bound, e.g. $a$, and a lower bound, e.g. $b$, such that $b leq a_n leq a$ for all $n$. This means that $b leq a_n < a_{n+1} leq a$...
The problem with that is: if $k rightarrow infty$, then the series diverges, because of the $-k$ at the end of the expression?! Is there some kind of trick or something to use here?!
Thanks for your help in advance.
Best Regards,
Ahmed Hossam
real-analysis calculus sequences-and-series real-numbers
real-analysis calculus sequences-and-series real-numbers
edited Dec 13 '18 at 12:24
Ahmed Hossam
asked Dec 13 '18 at 11:53
Ahmed HossamAhmed Hossam
126
126
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28
|
show 4 more comments
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28
|
show 4 more comments
2 Answers
2
active
oldest
votes
$begingroup$
We are given
$(a_n)$ is a strictly increasing sequence- of positive terms
- bounded from above.
Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,
$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$
As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have
$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$
By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$
The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.
$endgroup$
add a comment |
$begingroup$
You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.
Edit: to be more clear:
$frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.
Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.
$endgroup$
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
|
show 4 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037907%2fshow-that-sum-limits-n-1-infty-left-fraca-n1a-n-1-right-converg%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We are given
$(a_n)$ is a strictly increasing sequence- of positive terms
- bounded from above.
Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,
$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$
As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have
$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$
By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$
The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.
$endgroup$
add a comment |
$begingroup$
We are given
$(a_n)$ is a strictly increasing sequence- of positive terms
- bounded from above.
Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,
$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$
As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have
$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$
By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$
The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.
$endgroup$
add a comment |
$begingroup$
We are given
$(a_n)$ is a strictly increasing sequence- of positive terms
- bounded from above.
Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,
$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$
As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have
$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$
By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$
The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.
$endgroup$
We are given
$(a_n)$ is a strictly increasing sequence- of positive terms
- bounded from above.
Let's say $M$ is an upper bound. (*1) and (*2) implies for all $n$,
$$a_{n+1} > a_n > 0 implies frac{a_{n+1}}{a_n} > 1 iff frac{a_{n+1}}{a_n} - 1 > 0$$
As a sequence indexed by $k$, the partial sums $s_k stackrel{def}{=}sumlimits_{n=1}^k left(frac{a_{n+1}}{a_n} - 1right)$ is a sum of positive terms, so it is strictly increasing. More precisely, we have
$$
s_{k+1} - s_{k} =
sumlimits_{n=1}^{k+1} left(frac{a_{n+1}}{a_n} - 1right)
-
sumlimits_{n=1}^{k} left(frac{a_{n+1}}{a_n} - 1right)
= frac{a_{k+2}}{a_{k+1}} - 1 > 0
implies s_{k+1} > s_{k}
$$
By (*1) and (*2) again, we have $a_{n+1} > a_n ge a_1 > 0$. This implies
$$s_k = sum_{n=1}^k left(frac{a_{n+1}}{a_n} - 1 right)
= sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_n}
le sum_{n=1}^k frac{a_{n+1} - a_{n}}{a_1}
= frac{1}{a_1}sum_{n=1}^k (a_{n+1} - a_n)
$$
The last sum is a telescoping sum. Together with (*3), we obtain
$$s_k le frac{1}{a_1}(a_{k+1} - a_1) le frac{M-1}{a_1}$$
This means as a sequence, the partial sums is bounded from above too. Being increasing and bounded from above, the sequence $s_k$ converges. By definition, so does the series
$sumlimits_{n=1}^infty left(frac{a_{n+1}}{a_n} - 1right)$.
answered Dec 14 '18 at 3:58
achille huiachille hui
95.9k5132258
95.9k5132258
add a comment |
add a comment |
$begingroup$
You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.
Edit: to be more clear:
$frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.
Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.
$endgroup$
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
|
show 4 more comments
$begingroup$
You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.
Edit: to be more clear:
$frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.
Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.
$endgroup$
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
|
show 4 more comments
$begingroup$
You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.
Edit: to be more clear:
$frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.
Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.
$endgroup$
You can check that it is equivalent to determine whether the series of $logleft(frac{a_{n+1}}{a_n}right)$ converges, because $frac{a_{n+1}}{a_n} rightarrow 1$.
Edit: to be more clear:
$frac{a_{n+1}}{a_n}-1 sim logleft(frac{a_{n+1}}{a_n}right) > 0$ as $n$ goes to infinity.
Thus, the series $sum_n{frac{a_{n+1}}{a_n}-1}$ is convergent iff the series $sum_n{logleft(frac{a_{n+1}}{a_n}right)}$ is convergent.
edited Dec 13 '18 at 14:27
answered Dec 13 '18 at 11:59
MindlackMindlack
3,85518
3,85518
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
|
show 4 more comments
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
You mean $limlimits_{krightarrow infty}sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right) Leftrightarrow limlimits_{krightarrow infty}sumlimits_{n=1}^{k} log left(frac{a_{n+1}}{a_n}right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:38
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
No. I mean that one series grows to $infty$ iff the other does.
$endgroup$
– Mindlack
Dec 13 '18 at 12:41
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
Ok, which series is that one series and which is the other?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:43
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$frac{a_{k+1}}{a_k} rightarrow 1$ as $k rightarrow infty$, because the sequence $(a_n)$ has an upper bound. But this is only one term in $displaystylefrac{a_{2}}{a_1} + frac{a_{3}}{a_2} +cdots + frac{a_{k+1}}{a_k}-k$. All other fractions are $>1$, because $a_{n+1}>a_n$ ...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:17
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:28
|
show 4 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037907%2fshow-that-sum-limits-n-1-infty-left-fraca-n1a-n-1-right-converg%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Note that the sequence $(a_n)$ converges since it is increasing and bounded above. Hence, the fractions $frac{a_{n+1}}{a_n}$ tend to $1$ so that your summands $frac{a_{n+1}}{a_n}-1$ tend to $0$. Hence, the "$-k$" is not a problem. Of course summands tending to zero is just a necessary, not a sufficient condition for the series to converge.
$endgroup$
– Christoph
Dec 13 '18 at 12:08
$begingroup$
You mean $limlimits_{n rightarrow infty} left(frac{a_{n+1}}{a_n} - 1right) = limlimits_{n rightarrow infty} frac{a_{n+1}}{a_n} - limlimits_{n rightarrow infty} 1 = frac{limlimits_{n rightarrow infty} a_{n+1}}{limlimits_{n rightarrow infty} a_n} - 1 = frac{a}{a} - 1 = 1 - 1 = 0 $ ? Is this the same as $limlimits_{k rightarrow infty} sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)$?
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 12:32
$begingroup$
$$sumlimits_{n=1}^{k}left(frac{a_{n+1}}{a_n}-1right)=underbrace{left(overbrace{frac{a_{1+1}}{a_1}}^{>1}-1right)}_{>0}+underbrace{left(overbrace{frac{a_{2+1}}{a_2}}^{>1}- 1right)}_{>0}+cdots +underbrace{left(overbrace{frac{a_{k+1}}{a_k}}^{rightarrow 1} -1 right)}_{rightarrow 0}$$ if the terms in the sum converge to $0$, does this mean that, the partial sum converges to something???
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 14:27
$begingroup$
The partial sums are increasing and bounded from above... $$sum_{n=1}^k left(frac{a_{n+1}}{a_n} -1 right) = sum_{n=1}^k frac{a_{n+1}-a_n}{a_n} le sum_{n=1}^k frac{a_{n+1}-a_n}{a_1} = frac{a_{k+1}-a_1}{a_1}$$
$endgroup$
– achille hui
Dec 13 '18 at 14:38
$begingroup$
The last equality is not clear...
$endgroup$
– Ahmed Hossam
Dec 13 '18 at 18:28