$I_{m,n}=intfrac{x^m}{(ax^2+bx+c)^n}dx$ Reduction Formula
$begingroup$
I'm having trouble proving the following reduction formula:
If
$$I_{m,n}=intfrac{x^m}{(ax^2+bx+c)^n}dx$$
then
$$intfrac{x^m}{(ax^2+bx+c)^n}dx=-frac{x^{m-1}}{a(2m-n-1)(ax^2+bx+c)^{n-1}}-frac{b(n-m)}{a(2m-n-1)}I_{m-1,n}+frac{c(m-1)}{a(2m-n-1)}I_{m-2,n}$$
My attempt went as follows:
$$intfrac{x^m}{(ax^2+bx+c)^n}dxspacebegin{vmatrix}u=frac{1}{(ax^2+bx+c)^n}\du=frac{-n(2ax+b)}{(ax^2+bx+c)^{n+1}}dxend{vmatrix}space dv=x^mdxquad v=frac{1}{m+1}x^{m+1}\intfrac{x^m}{(ax^2+bx+c)^n}dx=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)intfrac{(2ax+b)x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)bigg(2aintfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bintfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dxbigg)\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{2an}{m+1}bigg)intfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bigg(frac{bn}{m+1}bigg)intfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{1}{m+1}I_{m+1,n}+bigg(frac{2an}{m+1}bigg)I_{m+2,n+1}+bigg(frac{bn}{m+1}bigg)I_{m+1,n+1}$$
This is where I'm stuck, any help?
integration reduction-formula
$endgroup$
add a comment |
$begingroup$
I'm having trouble proving the following reduction formula:
If
$$I_{m,n}=intfrac{x^m}{(ax^2+bx+c)^n}dx$$
then
$$intfrac{x^m}{(ax^2+bx+c)^n}dx=-frac{x^{m-1}}{a(2m-n-1)(ax^2+bx+c)^{n-1}}-frac{b(n-m)}{a(2m-n-1)}I_{m-1,n}+frac{c(m-1)}{a(2m-n-1)}I_{m-2,n}$$
My attempt went as follows:
$$intfrac{x^m}{(ax^2+bx+c)^n}dxspacebegin{vmatrix}u=frac{1}{(ax^2+bx+c)^n}\du=frac{-n(2ax+b)}{(ax^2+bx+c)^{n+1}}dxend{vmatrix}space dv=x^mdxquad v=frac{1}{m+1}x^{m+1}\intfrac{x^m}{(ax^2+bx+c)^n}dx=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)intfrac{(2ax+b)x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)bigg(2aintfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bintfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dxbigg)\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{2an}{m+1}bigg)intfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bigg(frac{bn}{m+1}bigg)intfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{1}{m+1}I_{m+1,n}+bigg(frac{2an}{m+1}bigg)I_{m+2,n+1}+bigg(frac{bn}{m+1}bigg)I_{m+1,n+1}$$
This is where I'm stuck, any help?
integration reduction-formula
$endgroup$
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50
add a comment |
$begingroup$
I'm having trouble proving the following reduction formula:
If
$$I_{m,n}=intfrac{x^m}{(ax^2+bx+c)^n}dx$$
then
$$intfrac{x^m}{(ax^2+bx+c)^n}dx=-frac{x^{m-1}}{a(2m-n-1)(ax^2+bx+c)^{n-1}}-frac{b(n-m)}{a(2m-n-1)}I_{m-1,n}+frac{c(m-1)}{a(2m-n-1)}I_{m-2,n}$$
My attempt went as follows:
$$intfrac{x^m}{(ax^2+bx+c)^n}dxspacebegin{vmatrix}u=frac{1}{(ax^2+bx+c)^n}\du=frac{-n(2ax+b)}{(ax^2+bx+c)^{n+1}}dxend{vmatrix}space dv=x^mdxquad v=frac{1}{m+1}x^{m+1}\intfrac{x^m}{(ax^2+bx+c)^n}dx=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)intfrac{(2ax+b)x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)bigg(2aintfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bintfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dxbigg)\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{2an}{m+1}bigg)intfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bigg(frac{bn}{m+1}bigg)intfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{1}{m+1}I_{m+1,n}+bigg(frac{2an}{m+1}bigg)I_{m+2,n+1}+bigg(frac{bn}{m+1}bigg)I_{m+1,n+1}$$
This is where I'm stuck, any help?
integration reduction-formula
$endgroup$
I'm having trouble proving the following reduction formula:
If
$$I_{m,n}=intfrac{x^m}{(ax^2+bx+c)^n}dx$$
then
$$intfrac{x^m}{(ax^2+bx+c)^n}dx=-frac{x^{m-1}}{a(2m-n-1)(ax^2+bx+c)^{n-1}}-frac{b(n-m)}{a(2m-n-1)}I_{m-1,n}+frac{c(m-1)}{a(2m-n-1)}I_{m-2,n}$$
My attempt went as follows:
$$intfrac{x^m}{(ax^2+bx+c)^n}dxspacebegin{vmatrix}u=frac{1}{(ax^2+bx+c)^n}\du=frac{-n(2ax+b)}{(ax^2+bx+c)^{n+1}}dxend{vmatrix}space dv=x^mdxquad v=frac{1}{m+1}x^{m+1}\intfrac{x^m}{(ax^2+bx+c)^n}dx=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)intfrac{(2ax+b)x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{n}{m+1}bigg)bigg(2aintfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bintfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dxbigg)\=frac{x^{m+1}}{(m+1)(ax^2+bx+c)^n}+bigg(frac{2an}{m+1}bigg)intfrac{x^{m+2}}{(ax^2+bx+c)^{n+1}}dx\+bigg(frac{bn}{m+1}bigg)intfrac{x^{m+1}}{(ax^2+bx+c)^{n+1}}dx\=frac{1}{m+1}I_{m+1,n}+bigg(frac{2an}{m+1}bigg)I_{m+2,n+1}+bigg(frac{bn}{m+1}bigg)I_{m+1,n+1}$$
This is where I'm stuck, any help?
integration reduction-formula
integration reduction-formula
edited Jan 8 at 2:37
clathratus
5,1141439
5,1141439
asked Jan 5 at 23:16
Anson PangAnson Pang
9216
9216
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50
add a comment |
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
So this means you are using the integration by parts in the wrong direction or with a wrong choice. In the reduction formula you are trying to achieve, you can notice that $m$ is decreasing while $n$ stays constant. Thus, you need a choice of $u,v$ such that:
$$udv = dfrac{x^mdx}{f^n(x)},$$
where $f(x) = ax^2+bx+c$ and:
$$vdu = Cdfrac{x^{m-1}dx}{f^n(x)},$$
with $C$ some constant. If you tried to naively take $u = x^m,$ then you will have $v = intdfrac{dx}{f^n(x)},$ which you cannot evaluate. Therefore, one needs to improvise somehow. For instance,
$$dleft(dfrac{1}{g^k(x)}right) = dfrac{kg'(x)g^{k-1}(x)dx}{g^{2k}(x)} = kdfrac{g'(x)dx}{g^{k+1}(x)}$$ for appropriately smooth function $g(x).$ This is where I will leave you with a hint:
$$dfrac{x^mdx}{f^n(x)} = dfrac{x^{m-1}}{2a}cdotdfrac{d(ax^2+bx+c)}{(ax^2+bx+c)^n} -dfrac{b}{2a}cdotdfrac{x^{m-1}}{(ax^2+bx+c)^n}=dots $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063306%2fi-m-n-int-fracxmax2bxcndx-reduction-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
So this means you are using the integration by parts in the wrong direction or with a wrong choice. In the reduction formula you are trying to achieve, you can notice that $m$ is decreasing while $n$ stays constant. Thus, you need a choice of $u,v$ such that:
$$udv = dfrac{x^mdx}{f^n(x)},$$
where $f(x) = ax^2+bx+c$ and:
$$vdu = Cdfrac{x^{m-1}dx}{f^n(x)},$$
with $C$ some constant. If you tried to naively take $u = x^m,$ then you will have $v = intdfrac{dx}{f^n(x)},$ which you cannot evaluate. Therefore, one needs to improvise somehow. For instance,
$$dleft(dfrac{1}{g^k(x)}right) = dfrac{kg'(x)g^{k-1}(x)dx}{g^{2k}(x)} = kdfrac{g'(x)dx}{g^{k+1}(x)}$$ for appropriately smooth function $g(x).$ This is where I will leave you with a hint:
$$dfrac{x^mdx}{f^n(x)} = dfrac{x^{m-1}}{2a}cdotdfrac{d(ax^2+bx+c)}{(ax^2+bx+c)^n} -dfrac{b}{2a}cdotdfrac{x^{m-1}}{(ax^2+bx+c)^n}=dots $$
$endgroup$
add a comment |
$begingroup$
So this means you are using the integration by parts in the wrong direction or with a wrong choice. In the reduction formula you are trying to achieve, you can notice that $m$ is decreasing while $n$ stays constant. Thus, you need a choice of $u,v$ such that:
$$udv = dfrac{x^mdx}{f^n(x)},$$
where $f(x) = ax^2+bx+c$ and:
$$vdu = Cdfrac{x^{m-1}dx}{f^n(x)},$$
with $C$ some constant. If you tried to naively take $u = x^m,$ then you will have $v = intdfrac{dx}{f^n(x)},$ which you cannot evaluate. Therefore, one needs to improvise somehow. For instance,
$$dleft(dfrac{1}{g^k(x)}right) = dfrac{kg'(x)g^{k-1}(x)dx}{g^{2k}(x)} = kdfrac{g'(x)dx}{g^{k+1}(x)}$$ for appropriately smooth function $g(x).$ This is where I will leave you with a hint:
$$dfrac{x^mdx}{f^n(x)} = dfrac{x^{m-1}}{2a}cdotdfrac{d(ax^2+bx+c)}{(ax^2+bx+c)^n} -dfrac{b}{2a}cdotdfrac{x^{m-1}}{(ax^2+bx+c)^n}=dots $$
$endgroup$
add a comment |
$begingroup$
So this means you are using the integration by parts in the wrong direction or with a wrong choice. In the reduction formula you are trying to achieve, you can notice that $m$ is decreasing while $n$ stays constant. Thus, you need a choice of $u,v$ such that:
$$udv = dfrac{x^mdx}{f^n(x)},$$
where $f(x) = ax^2+bx+c$ and:
$$vdu = Cdfrac{x^{m-1}dx}{f^n(x)},$$
with $C$ some constant. If you tried to naively take $u = x^m,$ then you will have $v = intdfrac{dx}{f^n(x)},$ which you cannot evaluate. Therefore, one needs to improvise somehow. For instance,
$$dleft(dfrac{1}{g^k(x)}right) = dfrac{kg'(x)g^{k-1}(x)dx}{g^{2k}(x)} = kdfrac{g'(x)dx}{g^{k+1}(x)}$$ for appropriately smooth function $g(x).$ This is where I will leave you with a hint:
$$dfrac{x^mdx}{f^n(x)} = dfrac{x^{m-1}}{2a}cdotdfrac{d(ax^2+bx+c)}{(ax^2+bx+c)^n} -dfrac{b}{2a}cdotdfrac{x^{m-1}}{(ax^2+bx+c)^n}=dots $$
$endgroup$
So this means you are using the integration by parts in the wrong direction or with a wrong choice. In the reduction formula you are trying to achieve, you can notice that $m$ is decreasing while $n$ stays constant. Thus, you need a choice of $u,v$ such that:
$$udv = dfrac{x^mdx}{f^n(x)},$$
where $f(x) = ax^2+bx+c$ and:
$$vdu = Cdfrac{x^{m-1}dx}{f^n(x)},$$
with $C$ some constant. If you tried to naively take $u = x^m,$ then you will have $v = intdfrac{dx}{f^n(x)},$ which you cannot evaluate. Therefore, one needs to improvise somehow. For instance,
$$dleft(dfrac{1}{g^k(x)}right) = dfrac{kg'(x)g^{k-1}(x)dx}{g^{2k}(x)} = kdfrac{g'(x)dx}{g^{k+1}(x)}$$ for appropriately smooth function $g(x).$ This is where I will leave you with a hint:
$$dfrac{x^mdx}{f^n(x)} = dfrac{x^{m-1}}{2a}cdotdfrac{d(ax^2+bx+c)}{(ax^2+bx+c)^n} -dfrac{b}{2a}cdotdfrac{x^{m-1}}{(ax^2+bx+c)^n}=dots $$
answered Jan 8 at 2:59
dezdichadodezdichado
6,4701929
6,4701929
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063306%2fi-m-n-int-fracxmax2bxcndx-reduction-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What are the restrictions on $m$ and $n$?
$endgroup$
– clathratus
Jan 8 at 2:49
$begingroup$
Also is the $I_{m+1,n}$ in the last line is a typo?
$endgroup$
– clathratus
Jan 8 at 2:50