Rational solution to a system of equations
Some context.
By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.
For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:
$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$
The question.
Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where
$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$
Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?
I believe the answer to be negative.
What I tried.
For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.
Lemma. The answer to the question is negative, if, and only if,
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$
I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.
Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.
We have
$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$
If we assume (to try to get somewhere) that
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$
then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that
$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$
which can be rewrite
$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$
So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.
Let's compute $det(M)$ then:
$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$
with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$
and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have
$$A=B=C=D=0.$$
The computations give
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
The question can now be reformulated as follow:
Does the system $(mathscr S)$ has rational solutions?
If we try to solve the system, we can end up with this expression:
$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$
The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:
Final remarks.
This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.
linear-algebra number-theory vector-spaces diophantine-equations rational-numbers
add a comment |
Some context.
By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.
For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:
$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$
The question.
Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where
$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$
Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?
I believe the answer to be negative.
What I tried.
For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.
Lemma. The answer to the question is negative, if, and only if,
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$
I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.
Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.
We have
$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$
If we assume (to try to get somewhere) that
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$
then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that
$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$
which can be rewrite
$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$
So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.
Let's compute $det(M)$ then:
$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$
with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$
and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have
$$A=B=C=D=0.$$
The computations give
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
The question can now be reformulated as follow:
Does the system $(mathscr S)$ has rational solutions?
If we try to solve the system, we can end up with this expression:
$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$
The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:
Final remarks.
This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.
linear-algebra number-theory vector-spaces diophantine-equations rational-numbers
add a comment |
Some context.
By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.
For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:
$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$
The question.
Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where
$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$
Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?
I believe the answer to be negative.
What I tried.
For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.
Lemma. The answer to the question is negative, if, and only if,
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$
I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.
Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.
We have
$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$
If we assume (to try to get somewhere) that
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$
then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that
$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$
which can be rewrite
$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$
So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.
Let's compute $det(M)$ then:
$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$
with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$
and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have
$$A=B=C=D=0.$$
The computations give
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
The question can now be reformulated as follow:
Does the system $(mathscr S)$ has rational solutions?
If we try to solve the system, we can end up with this expression:
$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$
The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:
Final remarks.
This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.
linear-algebra number-theory vector-spaces diophantine-equations rational-numbers
Some context.
By rational subspace, I mean a subspace of $mathbb R^5$ which admits a rational basis. In other words, a basis formed with vectors of $mathbb Q^5$.
For instance, the vector $v=(0,pi,3pi,pi-pi^2)$ is in a rational subspace of dimension $2$ since:
$$v=pibegin{pmatrix} 0 \ 1 \ 3 \ 1end{pmatrix}+pi^2begin{pmatrix} 0 \ 0 \ 0 \ -1end{pmatrix}.$$
The question.
Let $A=mathrm{Span}(Y_1,Y_2,Y_3)$ where
$$Y_1=begin{pmatrix} 1 \ 0 \ 0 \ sqrt 6 \ sqrt {15} end{pmatrix},quad Y_2=begin{pmatrix} 0 \ sqrt{6} \ 0 \ -sqrt {15} \ sqrt {10} end{pmatrix}quadtext { and }quad Y_3=begin{pmatrix} 0 \ 0 \ sqrt{15} \ sqrt {10} \ sqrt {6} end{pmatrix}.$$
Does there exist a rational subspace $B$ of $mathbb R^5$, of dimension $2$, such that $Acap Bne{0}$?
I believe the answer to be negative.
What I tried.
For $Yin A$, let's denote by $Y_1,ldots,Y_5inmathbb R$ its coordinates. We can prove the following lemma.
Lemma. The answer to the question is negative, if, and only if,
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(Y_1,ldots,Y_5)ge 3.$$
I tried to investigate what such a rational subspace $B$ would look like. Let's take $B$, a rational subspace of $mathbb R^5$ of dimension $2$, such that $Acap Bne{0}$.
Let $Y:=alpha Y_1+beta Y_2+gamma Y_3$ be a vector in $Asetminus{0}$.
We have
$$alpha Y_1+beta Y_2+gamma Y_3=begin{pmatrix} alpha \ betasqrt 6 \ gamma sqrt {15} \ alphasqrt 6-betasqrt {15} +gammasqrt{10} \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}end{pmatrix}.$$
If we assume (to try to get somewhere) that
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(alpha,sqrt{6}beta)=2,$$
then the last three coordinates of $Y$ must be a rational linear combination of the first two, i.e. there exists $x_1,ldots,x_6inmathbb Q$ such that
$$begin{cases}gamma sqrt {15}=x_1alpha+x_2betasqrt 6 \ alphasqrt 6-betasqrt {15} +gammasqrt{10}= x_3alpha+x_4betasqrt 6 \ alphasqrt{15}+betasqrt{10}+gammasqrt{6}=x_5alpha+x_6betasqrt 6end{cases}$$
which can be rewrite
$$MX=0quadtext{ with } quad M=begin{pmatrix} -x_1 & -x_2sqrt 6 & sqrt{15} \ sqrt{6}-x_3 & -sqrt{15}-x_4sqrt 6 & sqrt{10} \ sqrt{15}-x_5 & sqrt{10}- x_6sqrt 6 & sqrt 6 end{pmatrix}quad text{ and }quad X=begin{pmatrix} alpha \ beta\ gammaend{pmatrix}.$$
So if $det(M)ne 0$, we have won, since $(alpha,beta,gamma)=(0,0,0)$ is the only solution, thus $Y=0$ which is absurd.
Let's compute $det(M)$ then:
$$det(M)=Asqrt{15}+Bsqrt{10}+Csqrt 6+D,$$
with $A,B,C,Dinmathbb Q$ depending on the $x_i$. Since
$$dim_{mathbb Q}(mathrm{Span}_{mathbb Q}(sqrt 6,sqrt{10},sqrt{15}))=3,$$
and $A,B,C,Dinmathbb Q$, if we assume $det(M)=0$, we must have
$$A=B=C=D=0.$$
The computations give
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
The question can now be reformulated as follow:
Does the system $(mathscr S)$ has rational solutions?
If we try to solve the system, we can end up with this expression:
$frac{20 , x_{1} x_{3}^{2} x_{5} + 12 , x_{1}^{3} - 30 , x_{1}^{2} x_{3} + 20 , x_{1}^{2} x_{5} + 30 , x_{3}^{2} x_{5} - 30 , x_{1} x_{5}^{2} - 75 , x_{3} x_{5}^{2} + 186 , x_{1}^{2} - 225 , x_{3}^{2} + 120 , x_{1} x_{5} - 90 , x_{5}^{2} + 450 , x_{1} + 1125 , x_{3} + 180 , x_{5}}{2 , x_{1} x_{5} + 5 , x_{3} x_{5} + 6 , x_{5}}=0.$
The question is then to understand if this surface in $mathbb R^3$ has rational points. If you are curious about it, this is what the numerator looks like:
Final remarks.
This question really interests me, but I feel quite stuck about it. May be my whole approach isn't going to help. Any hints, references or piece of solutions would be much appreciated.
linear-algebra number-theory vector-spaces diophantine-equations rational-numbers
linear-algebra number-theory vector-spaces diophantine-equations rational-numbers
asked Dec 1 '18 at 14:31
E. Joseph
11.6k82856
11.6k82856
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
If your question boils down to the system,
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
then, YES, this system has infinitely many rational solutions. If you let,
$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$
This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,
$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$
You simply solve the linear equation,
$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$
for $x_6$, thus,
$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$
with free parameter $x_3$.
add a comment |
Above simultaneous equations shown below has numerical solutions:
$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$
$x_1$=$(-81255/10666)$
$x_2$=(32315/504)
$x_3$=$(2)$
$x_4$=$(-6295/252)$
$x_5$=$(-20790/5333)$
$x_6$=$(105/2)$
The solution provided by Tito Piezas in this context
actually requires solving a cubic equation instead of
a quadratic equation as mentioned by him.
(Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021415%2frational-solution-to-a-system-of-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If your question boils down to the system,
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
then, YES, this system has infinitely many rational solutions. If you let,
$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$
This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,
$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$
You simply solve the linear equation,
$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$
for $x_6$, thus,
$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$
with free parameter $x_3$.
add a comment |
If your question boils down to the system,
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
then, YES, this system has infinitely many rational solutions. If you let,
$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$
This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,
$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$
You simply solve the linear equation,
$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$
for $x_6$, thus,
$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$
with free parameter $x_3$.
add a comment |
If your question boils down to the system,
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
then, YES, this system has infinitely many rational solutions. If you let,
$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$
This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,
$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$
You simply solve the linear equation,
$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$
for $x_6$, thus,
$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$
with free parameter $x_3$.
If your question boils down to the system,
$$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$$
then, YES, this system has infinitely many rational solutions. If you let,
$$x_1 = x_4 x_5-x_3 x_6$$
$$x_2 = (5/6)(x_3-3x_4)$$
$$x_5 =frac{-3(15-6x_6+2x_3x_6^2)}{5x_3-15x_4-6x_4x_6}$$
This satisfies the first 3 equations and the 4th becomes a quadratic in $x_4$,
$$text{Poly}_1 x_4^2+text{Poly}_2 x_4+text{Poly}_3=0$$
You simply solve the linear equation,
$$text{Poly}_1 = -155 + 25 x_3 - 38 x_6 + 20 x_3 x_6 = 0$$
for $x_6$, thus,
$$x_4 =-frac{text{Poly}_3}{text{Poly}_2}$$
with free parameter $x_3$.
answered Dec 1 '18 at 15:28
Tito Piezas III
26.8k365169
26.8k365169
add a comment |
add a comment |
Above simultaneous equations shown below has numerical solutions:
$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$
$x_1$=$(-81255/10666)$
$x_2$=(32315/504)
$x_3$=$(2)$
$x_4$=$(-6295/252)$
$x_5$=$(-20790/5333)$
$x_6$=$(105/2)$
The solution provided by Tito Piezas in this context
actually requires solving a cubic equation instead of
a quadratic equation as mentioned by him.
(Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
add a comment |
Above simultaneous equations shown below has numerical solutions:
$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$
$x_1$=$(-81255/10666)$
$x_2$=(32315/504)
$x_3$=$(2)$
$x_4$=$(-6295/252)$
$x_5$=$(-20790/5333)$
$x_6$=$(105/2)$
The solution provided by Tito Piezas in this context
actually requires solving a cubic equation instead of
a quadratic equation as mentioned by him.
(Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
add a comment |
Above simultaneous equations shown below has numerical solutions:
$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$
$x_1$=$(-81255/10666)$
$x_2$=(32315/504)
$x_3$=$(2)$
$x_4$=$(-6295/252)$
$x_5$=$(-20790/5333)$
$x_6$=$(105/2)$
The solution provided by Tito Piezas in this context
actually requires solving a cubic equation instead of
a quadratic equation as mentioned by him.
(Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.
Above simultaneous equations shown below has numerical solutions:
$(mathscr S)quad begin{cases} 2x_2x_5-2x_1x_6-6x_6+15=0 \ -3x_4x_5+3x_3x_6+3x_1=0 \ 6x_2-5x_3+15x_4=0 \ 6x_2x_3+6x_1x_4+10x_1-30x_2-15x_5+30=0.end{cases}$
$x_1$=$(-81255/10666)$
$x_2$=(32315/504)
$x_3$=$(2)$
$x_4$=$(-6295/252)$
$x_5$=$(-20790/5333)$
$x_6$=$(105/2)$
The solution provided by Tito Piezas in this context
actually requires solving a cubic equation instead of
a quadratic equation as mentioned by him.
(Note by Tito Piezas): My solution is a cubic in the variable $x_3$, but only a quadratic in $color{red}{x_4}$. This is easily verified using Mathematica.
edited 2 days ago
Tito Piezas III
26.8k365169
26.8k365169
answered Dec 2 '18 at 15:40
Sam
191
191
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
add a comment |
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
Thanks a lot, I really appreciate the explicit solution.
– E. Joseph
Dec 2 '18 at 19:22
You are welcome
– Sam
Dec 2 '18 at 20:40
You are welcome
– Sam
Dec 2 '18 at 20:40
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
In my answer, I was careful to say it is a quadratic in the variable $color{red}{x_4}$. Your comment applies to the variable $x_3$.
– Tito Piezas III
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021415%2frational-solution-to-a-system-of-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown