Symmetry group of cube












0












$begingroup$


I want to carefully trace the entire sequence of interactions between the structures when getting the symmetry group of the cube. I'm just learning how to work with structures and diagrams, so please check the course of my reasoning.



So $mathbb{E}^3in Ob(Top)$ -- euclidean space. $K_3 subset mathbb{E}^3$ -- $3$-dim cube. $V$ -- group of permutations on the vertex-set. $Sym K_3 = {phiin Aut(mathbb{E}^3 mid phi(K_3) = K_3}$. All objects in the following diagram are $Mon$-category objects. $Hom(mathbb{E}^3,mathbb{E}^3)$ -- a monoid, because not all endomorphisms are invertible. (this is not monoidal-category, just category where all $Ob$ -- monoids).



$$begin{array}
A Sym(K_3) & stackrel{f}{hookrightarrow}& Aut(mathbb{E}^3)& stackrel{g}{hookrightarrow} & Hom(mathbb{E}^3,mathbb{E}^3) \
cong{H} \
V & stackrel{d}{hookrightarrow} & S_8
end{array}
$$



So $H$ -- isomorphism between $Sym(K_3)$, where elements are continuous functions, and $V$. I think, that $H$ -- functor $H: Mon rightarrow Grp$. $H$ translates those monoids, which are also groups, into these same groups.



Group $V$ action on $F_{Set}({vertices})$:



$$begin{array}
A mathbb{E}^3 & hookleftarrow & {vertices}\
downarrow{F_{Set}} & &downarrow{F_{Set}}\
X & hookleftarrow & F_{Set}({vertices}) & xleftarrow[phi]{pr_{ F_{Set}({verteces})}} & F_{Set}({vertices})times Y & xrightarrow{pr_Y} & Y & hookrightarrow &S\
& & & & & &uparrow{G_{Set}}&& uparrow{G_{Set}}\
& & & & & & V &hookrightarrow & S_8
end{array}
$$



Where $F_{Set}$ and $G_{Set}$ -- forgetful functors, $F_{Set}$ from $Top rightarrow Set$ and $G_{Set}$ from $Grprightarrow Set$, $Y$ -- group $V$ structure carrier. $phi$ -- action of group $V$ on set $X$ $phi(g, x) = g cdot x$, ${vertices}$ -- vertices (discrete subspace) of cube in euclidean space $mathbb{E}^3$.



So I want to proof, that $|Sym(K_3)| = |Vx||Vx,e||V_{x,e}| = 48$. Where $x$ -- one of vertices -- point in $mathbb{E}^3$, and $e$ -- edge exiting the vertex. Obviously, a vertex orbit consists of eight vertices: $|Vx| = 8$, from each vertex there are three edges, therefore the orbit of each of them $|Vx,e| = 3$ so $Rightarrow$ $|V_{x,e}| = 2$ -- $id$ and reflection relative to the plane passing through the edge.



And I do not really understand how to interpret the edge here? As a subspace of $mathbb{E}^3$ or like a pair of vertices $(x_1,x_2)$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Why this question has -1 rep? Where I am incorrect?
    $endgroup$
    – Just do it
    Dec 8 '18 at 2:24
















0












$begingroup$


I want to carefully trace the entire sequence of interactions between the structures when getting the symmetry group of the cube. I'm just learning how to work with structures and diagrams, so please check the course of my reasoning.



So $mathbb{E}^3in Ob(Top)$ -- euclidean space. $K_3 subset mathbb{E}^3$ -- $3$-dim cube. $V$ -- group of permutations on the vertex-set. $Sym K_3 = {phiin Aut(mathbb{E}^3 mid phi(K_3) = K_3}$. All objects in the following diagram are $Mon$-category objects. $Hom(mathbb{E}^3,mathbb{E}^3)$ -- a monoid, because not all endomorphisms are invertible. (this is not monoidal-category, just category where all $Ob$ -- monoids).



$$begin{array}
A Sym(K_3) & stackrel{f}{hookrightarrow}& Aut(mathbb{E}^3)& stackrel{g}{hookrightarrow} & Hom(mathbb{E}^3,mathbb{E}^3) \
cong{H} \
V & stackrel{d}{hookrightarrow} & S_8
end{array}
$$



So $H$ -- isomorphism between $Sym(K_3)$, where elements are continuous functions, and $V$. I think, that $H$ -- functor $H: Mon rightarrow Grp$. $H$ translates those monoids, which are also groups, into these same groups.



Group $V$ action on $F_{Set}({vertices})$:



$$begin{array}
A mathbb{E}^3 & hookleftarrow & {vertices}\
downarrow{F_{Set}} & &downarrow{F_{Set}}\
X & hookleftarrow & F_{Set}({vertices}) & xleftarrow[phi]{pr_{ F_{Set}({verteces})}} & F_{Set}({vertices})times Y & xrightarrow{pr_Y} & Y & hookrightarrow &S\
& & & & & &uparrow{G_{Set}}&& uparrow{G_{Set}}\
& & & & & & V &hookrightarrow & S_8
end{array}
$$



Where $F_{Set}$ and $G_{Set}$ -- forgetful functors, $F_{Set}$ from $Top rightarrow Set$ and $G_{Set}$ from $Grprightarrow Set$, $Y$ -- group $V$ structure carrier. $phi$ -- action of group $V$ on set $X$ $phi(g, x) = g cdot x$, ${vertices}$ -- vertices (discrete subspace) of cube in euclidean space $mathbb{E}^3$.



So I want to proof, that $|Sym(K_3)| = |Vx||Vx,e||V_{x,e}| = 48$. Where $x$ -- one of vertices -- point in $mathbb{E}^3$, and $e$ -- edge exiting the vertex. Obviously, a vertex orbit consists of eight vertices: $|Vx| = 8$, from each vertex there are three edges, therefore the orbit of each of them $|Vx,e| = 3$ so $Rightarrow$ $|V_{x,e}| = 2$ -- $id$ and reflection relative to the plane passing through the edge.



And I do not really understand how to interpret the edge here? As a subspace of $mathbb{E}^3$ or like a pair of vertices $(x_1,x_2)$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Why this question has -1 rep? Where I am incorrect?
    $endgroup$
    – Just do it
    Dec 8 '18 at 2:24














0












0








0





$begingroup$


I want to carefully trace the entire sequence of interactions between the structures when getting the symmetry group of the cube. I'm just learning how to work with structures and diagrams, so please check the course of my reasoning.



So $mathbb{E}^3in Ob(Top)$ -- euclidean space. $K_3 subset mathbb{E}^3$ -- $3$-dim cube. $V$ -- group of permutations on the vertex-set. $Sym K_3 = {phiin Aut(mathbb{E}^3 mid phi(K_3) = K_3}$. All objects in the following diagram are $Mon$-category objects. $Hom(mathbb{E}^3,mathbb{E}^3)$ -- a monoid, because not all endomorphisms are invertible. (this is not monoidal-category, just category where all $Ob$ -- monoids).



$$begin{array}
A Sym(K_3) & stackrel{f}{hookrightarrow}& Aut(mathbb{E}^3)& stackrel{g}{hookrightarrow} & Hom(mathbb{E}^3,mathbb{E}^3) \
cong{H} \
V & stackrel{d}{hookrightarrow} & S_8
end{array}
$$



So $H$ -- isomorphism between $Sym(K_3)$, where elements are continuous functions, and $V$. I think, that $H$ -- functor $H: Mon rightarrow Grp$. $H$ translates those monoids, which are also groups, into these same groups.



Group $V$ action on $F_{Set}({vertices})$:



$$begin{array}
A mathbb{E}^3 & hookleftarrow & {vertices}\
downarrow{F_{Set}} & &downarrow{F_{Set}}\
X & hookleftarrow & F_{Set}({vertices}) & xleftarrow[phi]{pr_{ F_{Set}({verteces})}} & F_{Set}({vertices})times Y & xrightarrow{pr_Y} & Y & hookrightarrow &S\
& & & & & &uparrow{G_{Set}}&& uparrow{G_{Set}}\
& & & & & & V &hookrightarrow & S_8
end{array}
$$



Where $F_{Set}$ and $G_{Set}$ -- forgetful functors, $F_{Set}$ from $Top rightarrow Set$ and $G_{Set}$ from $Grprightarrow Set$, $Y$ -- group $V$ structure carrier. $phi$ -- action of group $V$ on set $X$ $phi(g, x) = g cdot x$, ${vertices}$ -- vertices (discrete subspace) of cube in euclidean space $mathbb{E}^3$.



So I want to proof, that $|Sym(K_3)| = |Vx||Vx,e||V_{x,e}| = 48$. Where $x$ -- one of vertices -- point in $mathbb{E}^3$, and $e$ -- edge exiting the vertex. Obviously, a vertex orbit consists of eight vertices: $|Vx| = 8$, from each vertex there are three edges, therefore the orbit of each of them $|Vx,e| = 3$ so $Rightarrow$ $|V_{x,e}| = 2$ -- $id$ and reflection relative to the plane passing through the edge.



And I do not really understand how to interpret the edge here? As a subspace of $mathbb{E}^3$ or like a pair of vertices $(x_1,x_2)$?










share|cite|improve this question











$endgroup$




I want to carefully trace the entire sequence of interactions between the structures when getting the symmetry group of the cube. I'm just learning how to work with structures and diagrams, so please check the course of my reasoning.



So $mathbb{E}^3in Ob(Top)$ -- euclidean space. $K_3 subset mathbb{E}^3$ -- $3$-dim cube. $V$ -- group of permutations on the vertex-set. $Sym K_3 = {phiin Aut(mathbb{E}^3 mid phi(K_3) = K_3}$. All objects in the following diagram are $Mon$-category objects. $Hom(mathbb{E}^3,mathbb{E}^3)$ -- a monoid, because not all endomorphisms are invertible. (this is not monoidal-category, just category where all $Ob$ -- monoids).



$$begin{array}
A Sym(K_3) & stackrel{f}{hookrightarrow}& Aut(mathbb{E}^3)& stackrel{g}{hookrightarrow} & Hom(mathbb{E}^3,mathbb{E}^3) \
cong{H} \
V & stackrel{d}{hookrightarrow} & S_8
end{array}
$$



So $H$ -- isomorphism between $Sym(K_3)$, where elements are continuous functions, and $V$. I think, that $H$ -- functor $H: Mon rightarrow Grp$. $H$ translates those monoids, which are also groups, into these same groups.



Group $V$ action on $F_{Set}({vertices})$:



$$begin{array}
A mathbb{E}^3 & hookleftarrow & {vertices}\
downarrow{F_{Set}} & &downarrow{F_{Set}}\
X & hookleftarrow & F_{Set}({vertices}) & xleftarrow[phi]{pr_{ F_{Set}({verteces})}} & F_{Set}({vertices})times Y & xrightarrow{pr_Y} & Y & hookrightarrow &S\
& & & & & &uparrow{G_{Set}}&& uparrow{G_{Set}}\
& & & & & & V &hookrightarrow & S_8
end{array}
$$



Where $F_{Set}$ and $G_{Set}$ -- forgetful functors, $F_{Set}$ from $Top rightarrow Set$ and $G_{Set}$ from $Grprightarrow Set$, $Y$ -- group $V$ structure carrier. $phi$ -- action of group $V$ on set $X$ $phi(g, x) = g cdot x$, ${vertices}$ -- vertices (discrete subspace) of cube in euclidean space $mathbb{E}^3$.



So I want to proof, that $|Sym(K_3)| = |Vx||Vx,e||V_{x,e}| = 48$. Where $x$ -- one of vertices -- point in $mathbb{E}^3$, and $e$ -- edge exiting the vertex. Obviously, a vertex orbit consists of eight vertices: $|Vx| = 8$, from each vertex there are three edges, therefore the orbit of each of them $|Vx,e| = 3$ so $Rightarrow$ $|V_{x,e}| = 2$ -- $id$ and reflection relative to the plane passing through the edge.



And I do not really understand how to interpret the edge here? As a subspace of $mathbb{E}^3$ or like a pair of vertices $(x_1,x_2)$?







group-theory category-theory finite-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 12:48









user10354138

7,3772925




7,3772925










asked Dec 7 '18 at 12:38









Just do itJust do it

16718




16718








  • 1




    $begingroup$
    Why this question has -1 rep? Where I am incorrect?
    $endgroup$
    – Just do it
    Dec 8 '18 at 2:24














  • 1




    $begingroup$
    Why this question has -1 rep? Where I am incorrect?
    $endgroup$
    – Just do it
    Dec 8 '18 at 2:24








1




1




$begingroup$
Why this question has -1 rep? Where I am incorrect?
$endgroup$
– Just do it
Dec 8 '18 at 2:24




$begingroup$
Why this question has -1 rep? Where I am incorrect?
$endgroup$
– Just do it
Dec 8 '18 at 2:24










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029854%2fsymmetry-group-of-cube%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029854%2fsymmetry-group-of-cube%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen