Find all integers $a$ and $b$, so that $ab$ is a factor in $a^5+b$
$begingroup$
Find all integers $a$ and $b$, so that $ab$ is a factor in $a^5+b$
I know that $b=-a^5$ is a solution, but are there any more solutions?
number-theory
$endgroup$
add a comment |
$begingroup$
Find all integers $a$ and $b$, so that $ab$ is a factor in $a^5+b$
I know that $b=-a^5$ is a solution, but are there any more solutions?
number-theory
$endgroup$
add a comment |
$begingroup$
Find all integers $a$ and $b$, so that $ab$ is a factor in $a^5+b$
I know that $b=-a^5$ is a solution, but are there any more solutions?
number-theory
$endgroup$
Find all integers $a$ and $b$, so that $ab$ is a factor in $a^5+b$
I know that $b=-a^5$ is a solution, but are there any more solutions?
number-theory
number-theory
edited Dec 19 '18 at 15:29
greedoid
43.2k1153105
43.2k1153105
asked Dec 17 '18 at 21:22
aggisanderaggisander
363
363
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: Let's say we have $ab|a^n+b$ for some fixed $n$. Then $a|ab|a^n+b$, so $a|b$. Thus, let $b=ka$. Then, we need
$$ka^2big|a^n+ka$$
$$kabig|a^{n-1}+k$$
We can reduce this down to $ka|1+k$. Can you solve it from here, and use this to find all solutions to $ab|a^5+b$.
$endgroup$
add a comment |
$begingroup$
So $$abmid a^5+b implies amid a^5+b implies amid b$$
so $b=ca$. Now we have $$acamid a^5+ca implies acmid a^4+c implies amid c$$
so $c=da$. Now we have $$adamid a^4+da implies admid a^3+d implies amid d$$
so $d=ea$. Now we have $$aeamid a^3+ea implies aemid a^2+e implies amid e$$
so $e=fa$. Now we have $$afamid a^2+fa implies afmid a+f implies amid f$$
so $f=ga$. Now we have $$agamid a+ga implies agmid 1+g implies gmid 1$$
so $g=1$ and $amid 2$ so $ain {1,-1,2,-2}$ and $b...$
$endgroup$
add a comment |
$begingroup$
Hint $ abc = a^5!+!b !iff! b(ac!-!1) = a^5!iff! b = dfrac{a^5}{ac!-!1}.,$ It's reduced by $,gcd(a,ac!-!1)=1$ hence $,binBbb Ziff, ac!-!1 = pm1iff ldots$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044454%2ffind-all-integers-a-and-b-so-that-ab-is-a-factor-in-a5b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Let's say we have $ab|a^n+b$ for some fixed $n$. Then $a|ab|a^n+b$, so $a|b$. Thus, let $b=ka$. Then, we need
$$ka^2big|a^n+ka$$
$$kabig|a^{n-1}+k$$
We can reduce this down to $ka|1+k$. Can you solve it from here, and use this to find all solutions to $ab|a^5+b$.
$endgroup$
add a comment |
$begingroup$
Hint: Let's say we have $ab|a^n+b$ for some fixed $n$. Then $a|ab|a^n+b$, so $a|b$. Thus, let $b=ka$. Then, we need
$$ka^2big|a^n+ka$$
$$kabig|a^{n-1}+k$$
We can reduce this down to $ka|1+k$. Can you solve it from here, and use this to find all solutions to $ab|a^5+b$.
$endgroup$
add a comment |
$begingroup$
Hint: Let's say we have $ab|a^n+b$ for some fixed $n$. Then $a|ab|a^n+b$, so $a|b$. Thus, let $b=ka$. Then, we need
$$ka^2big|a^n+ka$$
$$kabig|a^{n-1}+k$$
We can reduce this down to $ka|1+k$. Can you solve it from here, and use this to find all solutions to $ab|a^5+b$.
$endgroup$
Hint: Let's say we have $ab|a^n+b$ for some fixed $n$. Then $a|ab|a^n+b$, so $a|b$. Thus, let $b=ka$. Then, we need
$$ka^2big|a^n+ka$$
$$kabig|a^{n-1}+k$$
We can reduce this down to $ka|1+k$. Can you solve it from here, and use this to find all solutions to $ab|a^5+b$.
answered Dec 17 '18 at 21:32
Carl SchildkrautCarl Schildkraut
11.5k11441
11.5k11441
add a comment |
add a comment |
$begingroup$
So $$abmid a^5+b implies amid a^5+b implies amid b$$
so $b=ca$. Now we have $$acamid a^5+ca implies acmid a^4+c implies amid c$$
so $c=da$. Now we have $$adamid a^4+da implies admid a^3+d implies amid d$$
so $d=ea$. Now we have $$aeamid a^3+ea implies aemid a^2+e implies amid e$$
so $e=fa$. Now we have $$afamid a^2+fa implies afmid a+f implies amid f$$
so $f=ga$. Now we have $$agamid a+ga implies agmid 1+g implies gmid 1$$
so $g=1$ and $amid 2$ so $ain {1,-1,2,-2}$ and $b...$
$endgroup$
add a comment |
$begingroup$
So $$abmid a^5+b implies amid a^5+b implies amid b$$
so $b=ca$. Now we have $$acamid a^5+ca implies acmid a^4+c implies amid c$$
so $c=da$. Now we have $$adamid a^4+da implies admid a^3+d implies amid d$$
so $d=ea$. Now we have $$aeamid a^3+ea implies aemid a^2+e implies amid e$$
so $e=fa$. Now we have $$afamid a^2+fa implies afmid a+f implies amid f$$
so $f=ga$. Now we have $$agamid a+ga implies agmid 1+g implies gmid 1$$
so $g=1$ and $amid 2$ so $ain {1,-1,2,-2}$ and $b...$
$endgroup$
add a comment |
$begingroup$
So $$abmid a^5+b implies amid a^5+b implies amid b$$
so $b=ca$. Now we have $$acamid a^5+ca implies acmid a^4+c implies amid c$$
so $c=da$. Now we have $$adamid a^4+da implies admid a^3+d implies amid d$$
so $d=ea$. Now we have $$aeamid a^3+ea implies aemid a^2+e implies amid e$$
so $e=fa$. Now we have $$afamid a^2+fa implies afmid a+f implies amid f$$
so $f=ga$. Now we have $$agamid a+ga implies agmid 1+g implies gmid 1$$
so $g=1$ and $amid 2$ so $ain {1,-1,2,-2}$ and $b...$
$endgroup$
So $$abmid a^5+b implies amid a^5+b implies amid b$$
so $b=ca$. Now we have $$acamid a^5+ca implies acmid a^4+c implies amid c$$
so $c=da$. Now we have $$adamid a^4+da implies admid a^3+d implies amid d$$
so $d=ea$. Now we have $$aeamid a^3+ea implies aemid a^2+e implies amid e$$
so $e=fa$. Now we have $$afamid a^2+fa implies afmid a+f implies amid f$$
so $f=ga$. Now we have $$agamid a+ga implies agmid 1+g implies gmid 1$$
so $g=1$ and $amid 2$ so $ain {1,-1,2,-2}$ and $b...$
answered Dec 19 '18 at 11:40
greedoidgreedoid
43.2k1153105
43.2k1153105
add a comment |
add a comment |
$begingroup$
Hint $ abc = a^5!+!b !iff! b(ac!-!1) = a^5!iff! b = dfrac{a^5}{ac!-!1}.,$ It's reduced by $,gcd(a,ac!-!1)=1$ hence $,binBbb Ziff, ac!-!1 = pm1iff ldots$
$endgroup$
add a comment |
$begingroup$
Hint $ abc = a^5!+!b !iff! b(ac!-!1) = a^5!iff! b = dfrac{a^5}{ac!-!1}.,$ It's reduced by $,gcd(a,ac!-!1)=1$ hence $,binBbb Ziff, ac!-!1 = pm1iff ldots$
$endgroup$
add a comment |
$begingroup$
Hint $ abc = a^5!+!b !iff! b(ac!-!1) = a^5!iff! b = dfrac{a^5}{ac!-!1}.,$ It's reduced by $,gcd(a,ac!-!1)=1$ hence $,binBbb Ziff, ac!-!1 = pm1iff ldots$
$endgroup$
Hint $ abc = a^5!+!b !iff! b(ac!-!1) = a^5!iff! b = dfrac{a^5}{ac!-!1}.,$ It's reduced by $,gcd(a,ac!-!1)=1$ hence $,binBbb Ziff, ac!-!1 = pm1iff ldots$
edited Dec 17 '18 at 22:26
answered Dec 17 '18 at 22:05
Bill DubuqueBill Dubuque
211k29193646
211k29193646
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044454%2ffind-all-integers-a-and-b-so-that-ab-is-a-factor-in-a5b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown