How can we show these two relations?












0












$begingroup$


I want to show that $$frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]
(ngeq 1)$$
and that $$p_nq_{n-3}-q_np_{n-3}=(-1)^{n-1}(a_na_{n-1}+1)$$ but I don't really have an idea how to start.



Could you give me a hint?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Induction on $n$?
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:07










  • $begingroup$
    $p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 20:09






  • 2




    $begingroup$
    In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:10






  • 1




    $begingroup$
    Let us know if you need further hints.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:22








  • 1




    $begingroup$
    Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 21:09
















0












$begingroup$


I want to show that $$frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]
(ngeq 1)$$
and that $$p_nq_{n-3}-q_np_{n-3}=(-1)^{n-1}(a_na_{n-1}+1)$$ but I don't really have an idea how to start.



Could you give me a hint?










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Induction on $n$?
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:07










  • $begingroup$
    $p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 20:09






  • 2




    $begingroup$
    In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:10






  • 1




    $begingroup$
    Let us know if you need further hints.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:22








  • 1




    $begingroup$
    Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 21:09














0












0








0


0



$begingroup$


I want to show that $$frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]
(ngeq 1)$$
and that $$p_nq_{n-3}-q_np_{n-3}=(-1)^{n-1}(a_na_{n-1}+1)$$ but I don't really have an idea how to start.



Could you give me a hint?










share|cite|improve this question











$endgroup$




I want to show that $$frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]
(ngeq 1)$$
and that $$p_nq_{n-3}-q_np_{n-3}=(-1)^{n-1}(a_na_{n-1}+1)$$ but I don't really have an idea how to start.



Could you give me a hint?







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 20:12







Mary Star

















asked Dec 17 '18 at 20:07









Mary StarMary Star

3,08982369




3,08982369








  • 3




    $begingroup$
    Induction on $n$?
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:07










  • $begingroup$
    $p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 20:09






  • 2




    $begingroup$
    In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:10






  • 1




    $begingroup$
    Let us know if you need further hints.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:22








  • 1




    $begingroup$
    Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 21:09














  • 3




    $begingroup$
    Induction on $n$?
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:07










  • $begingroup$
    $p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 20:09






  • 2




    $begingroup$
    In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:10






  • 1




    $begingroup$
    Let us know if you need further hints.
    $endgroup$
    – MisterRiemann
    Dec 17 '18 at 20:22








  • 1




    $begingroup$
    Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
    $endgroup$
    – Mary Star
    Dec 17 '18 at 21:09








3




3




$begingroup$
Induction on $n$?
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:07




$begingroup$
Induction on $n$?
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:07












$begingroup$
$p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
$endgroup$
– Mary Star
Dec 17 '18 at 20:09




$begingroup$
$p_n$ is the $n$th prime, isn't it? What exactly is $q_n$ ? @MisterRiemann
$endgroup$
– Mary Star
Dec 17 '18 at 20:09




2




2




$begingroup$
In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:10




$begingroup$
In the context of continued fractions, $p_n$ and $q_n$ are respectively the numerator and the denominator of the $n$-th convergent $C_n$.
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:10




1




1




$begingroup$
Let us know if you need further hints.
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:22






$begingroup$
Let us know if you need further hints.
$endgroup$
– MisterRiemann
Dec 17 '18 at 20:22






1




1




$begingroup$
Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
$endgroup$
– Mary Star
Dec 17 '18 at 21:09




$begingroup$
Base Case: For $n=1$ we have $frac{p_1}{p_0}=frac{a_1a_0+1}{1}=a_1a_0+1$. Is this equal to $[a_1, a_0]$ ? $$$$ Inductive Hypothesis: We suppose that the statement holds for some $n$, i.e. $frac{p_n}{p_{n-1}}=[a_n, a_{n-1}, ldots , a_1, a_0]$. $$$$ Inductive Step: We want to show that it holds for $n+1$: $$frac{p_{n+1}}{p_n}=frac{a_{n+1}p_{n}+p_{n-1}}{p_n}=a_{n+1}+frac{p_{n-1}}{p_n}=a_{n+1}+frac{1}{frac{p_n}{p_{n-1}}}$$ Is this correct so far? @MisterRiemann
$endgroup$
– Mary Star
Dec 17 '18 at 21:09










1 Answer
1






active

oldest

votes


















0












$begingroup$

Hint for the second question!!



Use that $p_{n-3}=p_{n-1}-a_{n-1}p_{n-2}$ and $q_{n-3}=q_{n-1}-a_{n-1}q_{n-2}$.



Doing some math you will get
$(p_{n}q_{n-1} - q_{n}p_{n-1}) + a_{n-1} ( q_{n}p_{n-2} - p_{n}q_{n-2} ) $



Use induction for the 2 brackets.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044379%2fhow-can-we-show-these-two-relations%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Hint for the second question!!



    Use that $p_{n-3}=p_{n-1}-a_{n-1}p_{n-2}$ and $q_{n-3}=q_{n-1}-a_{n-1}q_{n-2}$.



    Doing some math you will get
    $(p_{n}q_{n-1} - q_{n}p_{n-1}) + a_{n-1} ( q_{n}p_{n-2} - p_{n}q_{n-2} ) $



    Use induction for the 2 brackets.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Hint for the second question!!



      Use that $p_{n-3}=p_{n-1}-a_{n-1}p_{n-2}$ and $q_{n-3}=q_{n-1}-a_{n-1}q_{n-2}$.



      Doing some math you will get
      $(p_{n}q_{n-1} - q_{n}p_{n-1}) + a_{n-1} ( q_{n}p_{n-2} - p_{n}q_{n-2} ) $



      Use induction for the 2 brackets.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Hint for the second question!!



        Use that $p_{n-3}=p_{n-1}-a_{n-1}p_{n-2}$ and $q_{n-3}=q_{n-1}-a_{n-1}q_{n-2}$.



        Doing some math you will get
        $(p_{n}q_{n-1} - q_{n}p_{n-1}) + a_{n-1} ( q_{n}p_{n-2} - p_{n}q_{n-2} ) $



        Use induction for the 2 brackets.






        share|cite|improve this answer









        $endgroup$



        Hint for the second question!!



        Use that $p_{n-3}=p_{n-1}-a_{n-1}p_{n-2}$ and $q_{n-3}=q_{n-1}-a_{n-1}q_{n-2}$.



        Doing some math you will get
        $(p_{n}q_{n-1} - q_{n}p_{n-1}) + a_{n-1} ( q_{n}p_{n-2} - p_{n}q_{n-2} ) $



        Use induction for the 2 brackets.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 18 '18 at 0:08









        Dr.MathematicsDr.Mathematics

        111




        111






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044379%2fhow-can-we-show-these-two-relations%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen