Uniform convergence exercise












0












$begingroup$


This was a question asked to me in an exam which I couldn't answer:

Let $g:[0,1]to Bbb R$ be a continuous function, such that $0<g(x)<1$ for all $xin[0,1]$. Let $f_n :[0,1] to Bbb R$ be a sequence of functions. Prove that if $f_n$ converges uniformly to $mathit g$ then there exists $n_0 in Bbb N$ such that $0< f_n (x)< 1$ for all $ngeqslant n_0 ,text{ for all $x in [0,1]$}$.



What I tried to do was using the definition of uniform convergence, given $varepsilon >0 $there exists $n_0$ such that for all $n geqslant n_0$, $|f_n - g|<varepsilon$. This would mean that $-varepsilon < f_n - g < varepsilon$. Therefore, $$-varepsilon + g < f_n < varepsilon + g$$ and since $0<g<1$, $$-varepsilon + 0< -varepsilon + g< f_n < varepsilon + g <varepsilon + 1.$$ So, $-varepsilon<f_n<varepsilon +1$. I don't know how to go from here. Any help would be appreciated.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
    $endgroup$
    – Will M.
    Dec 17 '18 at 21:55


















0












$begingroup$


This was a question asked to me in an exam which I couldn't answer:

Let $g:[0,1]to Bbb R$ be a continuous function, such that $0<g(x)<1$ for all $xin[0,1]$. Let $f_n :[0,1] to Bbb R$ be a sequence of functions. Prove that if $f_n$ converges uniformly to $mathit g$ then there exists $n_0 in Bbb N$ such that $0< f_n (x)< 1$ for all $ngeqslant n_0 ,text{ for all $x in [0,1]$}$.



What I tried to do was using the definition of uniform convergence, given $varepsilon >0 $there exists $n_0$ such that for all $n geqslant n_0$, $|f_n - g|<varepsilon$. This would mean that $-varepsilon < f_n - g < varepsilon$. Therefore, $$-varepsilon + g < f_n < varepsilon + g$$ and since $0<g<1$, $$-varepsilon + 0< -varepsilon + g< f_n < varepsilon + g <varepsilon + 1.$$ So, $-varepsilon<f_n<varepsilon +1$. I don't know how to go from here. Any help would be appreciated.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
    $endgroup$
    – Will M.
    Dec 17 '18 at 21:55
















0












0








0





$begingroup$


This was a question asked to me in an exam which I couldn't answer:

Let $g:[0,1]to Bbb R$ be a continuous function, such that $0<g(x)<1$ for all $xin[0,1]$. Let $f_n :[0,1] to Bbb R$ be a sequence of functions. Prove that if $f_n$ converges uniformly to $mathit g$ then there exists $n_0 in Bbb N$ such that $0< f_n (x)< 1$ for all $ngeqslant n_0 ,text{ for all $x in [0,1]$}$.



What I tried to do was using the definition of uniform convergence, given $varepsilon >0 $there exists $n_0$ such that for all $n geqslant n_0$, $|f_n - g|<varepsilon$. This would mean that $-varepsilon < f_n - g < varepsilon$. Therefore, $$-varepsilon + g < f_n < varepsilon + g$$ and since $0<g<1$, $$-varepsilon + 0< -varepsilon + g< f_n < varepsilon + g <varepsilon + 1.$$ So, $-varepsilon<f_n<varepsilon +1$. I don't know how to go from here. Any help would be appreciated.










share|cite|improve this question









$endgroup$




This was a question asked to me in an exam which I couldn't answer:

Let $g:[0,1]to Bbb R$ be a continuous function, such that $0<g(x)<1$ for all $xin[0,1]$. Let $f_n :[0,1] to Bbb R$ be a sequence of functions. Prove that if $f_n$ converges uniformly to $mathit g$ then there exists $n_0 in Bbb N$ such that $0< f_n (x)< 1$ for all $ngeqslant n_0 ,text{ for all $x in [0,1]$}$.



What I tried to do was using the definition of uniform convergence, given $varepsilon >0 $there exists $n_0$ such that for all $n geqslant n_0$, $|f_n - g|<varepsilon$. This would mean that $-varepsilon < f_n - g < varepsilon$. Therefore, $$-varepsilon + g < f_n < varepsilon + g$$ and since $0<g<1$, $$-varepsilon + 0< -varepsilon + g< f_n < varepsilon + g <varepsilon + 1.$$ So, $-varepsilon<f_n<varepsilon +1$. I don't know how to go from here. Any help would be appreciated.







continuity uniform-convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 17 '18 at 21:22









juan deutschjuan deutsch

156




156












  • $begingroup$
    Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
    $endgroup$
    – Will M.
    Dec 17 '18 at 21:55




















  • $begingroup$
    Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
    $endgroup$
    – Will M.
    Dec 17 '18 at 21:55


















$begingroup$
Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
$endgroup$
– Will M.
Dec 17 '18 at 21:55






$begingroup$
Since $g$ is continuous and $[0, 1]$ is compact, $|g| = sup g < 1$ and then, $|f_n - g| < 1 -|g|$ for all large $n,$ this implies $sup f_n < 1$ for all large $n.$ The case $0 < inf f_n$ is similar.
$endgroup$
– Will M.
Dec 17 '18 at 21:55












2 Answers
2






active

oldest

votes


















1












$begingroup$

Let $M=max g$ and let $m=min G$. Then $0<mleqslant M<1$. Take $varepsilon>0$ such that, $varepsilon<m$ and that $varepsilon<1-M$. THere is a natural $N$ such that$$(forall ninmathbb{N})(forall xin[0,1]):ngeqslant Nimpliesbigllvert g(x)-f_n(x)bigrrvert<varepsilon.$$But then, since$$(forall xin[0,1]):mleqslant g(x)leqslant M$$and since $varepsilon<m$ and $varepsilon<1-M$, we have$$(forall xin[0,1]):0<f_N(x)<1.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I did not understand the last step. Could you explain what you did? Thanks!
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:37










  • $begingroup$
    Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:46












  • $begingroup$
    By the same argument, $f_N(x)>0$.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:49












  • $begingroup$
    Thank you for the clarification.
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:55










  • $begingroup$
    I'm glad I could help.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:56



















0












$begingroup$

Since $g$ is continuous on a compact set we have that $0<m<g(x)<M<1$ for all $xin [0,1]$. Let $n_0$ be large enough so for $ngeq n_0$, $|f_n(x)-g(x)|<min(m,1-M)$ for all $xin [0,1]$. Then for all $xin[0,1]$
$$f_n(x)= (f_n(x)-g(x))+g(x)<(1-M)+M<1$$ and
$$-f_n(x)=(g(x)-f_n(x))-g(x)< m-m=0implies 0<f_n(x)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044455%2funiform-convergence-exercise%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let $M=max g$ and let $m=min G$. Then $0<mleqslant M<1$. Take $varepsilon>0$ such that, $varepsilon<m$ and that $varepsilon<1-M$. THere is a natural $N$ such that$$(forall ninmathbb{N})(forall xin[0,1]):ngeqslant Nimpliesbigllvert g(x)-f_n(x)bigrrvert<varepsilon.$$But then, since$$(forall xin[0,1]):mleqslant g(x)leqslant M$$and since $varepsilon<m$ and $varepsilon<1-M$, we have$$(forall xin[0,1]):0<f_N(x)<1.$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I did not understand the last step. Could you explain what you did? Thanks!
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:37










    • $begingroup$
      Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:46












    • $begingroup$
      By the same argument, $f_N(x)>0$.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:49












    • $begingroup$
      Thank you for the clarification.
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:55










    • $begingroup$
      I'm glad I could help.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:56
















    1












    $begingroup$

    Let $M=max g$ and let $m=min G$. Then $0<mleqslant M<1$. Take $varepsilon>0$ such that, $varepsilon<m$ and that $varepsilon<1-M$. THere is a natural $N$ such that$$(forall ninmathbb{N})(forall xin[0,1]):ngeqslant Nimpliesbigllvert g(x)-f_n(x)bigrrvert<varepsilon.$$But then, since$$(forall xin[0,1]):mleqslant g(x)leqslant M$$and since $varepsilon<m$ and $varepsilon<1-M$, we have$$(forall xin[0,1]):0<f_N(x)<1.$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I did not understand the last step. Could you explain what you did? Thanks!
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:37










    • $begingroup$
      Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:46












    • $begingroup$
      By the same argument, $f_N(x)>0$.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:49












    • $begingroup$
      Thank you for the clarification.
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:55










    • $begingroup$
      I'm glad I could help.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:56














    1












    1








    1





    $begingroup$

    Let $M=max g$ and let $m=min G$. Then $0<mleqslant M<1$. Take $varepsilon>0$ such that, $varepsilon<m$ and that $varepsilon<1-M$. THere is a natural $N$ such that$$(forall ninmathbb{N})(forall xin[0,1]):ngeqslant Nimpliesbigllvert g(x)-f_n(x)bigrrvert<varepsilon.$$But then, since$$(forall xin[0,1]):mleqslant g(x)leqslant M$$and since $varepsilon<m$ and $varepsilon<1-M$, we have$$(forall xin[0,1]):0<f_N(x)<1.$$






    share|cite|improve this answer











    $endgroup$



    Let $M=max g$ and let $m=min G$. Then $0<mleqslant M<1$. Take $varepsilon>0$ such that, $varepsilon<m$ and that $varepsilon<1-M$. THere is a natural $N$ such that$$(forall ninmathbb{N})(forall xin[0,1]):ngeqslant Nimpliesbigllvert g(x)-f_n(x)bigrrvert<varepsilon.$$But then, since$$(forall xin[0,1]):mleqslant g(x)leqslant M$$and since $varepsilon<m$ and $varepsilon<1-M$, we have$$(forall xin[0,1]):0<f_N(x)<1.$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 17 '18 at 21:48

























    answered Dec 17 '18 at 21:31









    José Carlos SantosJosé Carlos Santos

    162k22130233




    162k22130233












    • $begingroup$
      I did not understand the last step. Could you explain what you did? Thanks!
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:37










    • $begingroup$
      Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:46












    • $begingroup$
      By the same argument, $f_N(x)>0$.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:49












    • $begingroup$
      Thank you for the clarification.
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:55










    • $begingroup$
      I'm glad I could help.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:56


















    • $begingroup$
      I did not understand the last step. Could you explain what you did? Thanks!
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:37










    • $begingroup$
      Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:46












    • $begingroup$
      By the same argument, $f_N(x)>0$.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:49












    • $begingroup$
      Thank you for the clarification.
      $endgroup$
      – juan deutsch
      Dec 17 '18 at 21:55










    • $begingroup$
      I'm glad I could help.
      $endgroup$
      – José Carlos Santos
      Dec 17 '18 at 21:56
















    $begingroup$
    I did not understand the last step. Could you explain what you did? Thanks!
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:37




    $begingroup$
    I did not understand the last step. Could you explain what you did? Thanks!
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:37












    $begingroup$
    Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:46






    $begingroup$
    Sure:begin{align}f_N(x)&=f_N(x)-g(x)+g(x)\&leqslantbigllvert f_N(x)-g(x)bigrrvert+g(x)\&leqslantvarepsilon+g(x)\&<1-M+M\&=1.end{align}
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:46














    $begingroup$
    By the same argument, $f_N(x)>0$.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:49






    $begingroup$
    By the same argument, $f_N(x)>0$.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:49














    $begingroup$
    Thank you for the clarification.
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:55




    $begingroup$
    Thank you for the clarification.
    $endgroup$
    – juan deutsch
    Dec 17 '18 at 21:55












    $begingroup$
    I'm glad I could help.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:56




    $begingroup$
    I'm glad I could help.
    $endgroup$
    – José Carlos Santos
    Dec 17 '18 at 21:56











    0












    $begingroup$

    Since $g$ is continuous on a compact set we have that $0<m<g(x)<M<1$ for all $xin [0,1]$. Let $n_0$ be large enough so for $ngeq n_0$, $|f_n(x)-g(x)|<min(m,1-M)$ for all $xin [0,1]$. Then for all $xin[0,1]$
    $$f_n(x)= (f_n(x)-g(x))+g(x)<(1-M)+M<1$$ and
    $$-f_n(x)=(g(x)-f_n(x))-g(x)< m-m=0implies 0<f_n(x)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Since $g$ is continuous on a compact set we have that $0<m<g(x)<M<1$ for all $xin [0,1]$. Let $n_0$ be large enough so for $ngeq n_0$, $|f_n(x)-g(x)|<min(m,1-M)$ for all $xin [0,1]$. Then for all $xin[0,1]$
      $$f_n(x)= (f_n(x)-g(x))+g(x)<(1-M)+M<1$$ and
      $$-f_n(x)=(g(x)-f_n(x))-g(x)< m-m=0implies 0<f_n(x)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Since $g$ is continuous on a compact set we have that $0<m<g(x)<M<1$ for all $xin [0,1]$. Let $n_0$ be large enough so for $ngeq n_0$, $|f_n(x)-g(x)|<min(m,1-M)$ for all $xin [0,1]$. Then for all $xin[0,1]$
        $$f_n(x)= (f_n(x)-g(x))+g(x)<(1-M)+M<1$$ and
        $$-f_n(x)=(g(x)-f_n(x))-g(x)< m-m=0implies 0<f_n(x)$$






        share|cite|improve this answer









        $endgroup$



        Since $g$ is continuous on a compact set we have that $0<m<g(x)<M<1$ for all $xin [0,1]$. Let $n_0$ be large enough so for $ngeq n_0$, $|f_n(x)-g(x)|<min(m,1-M)$ for all $xin [0,1]$. Then for all $xin[0,1]$
        $$f_n(x)= (f_n(x)-g(x))+g(x)<(1-M)+M<1$$ and
        $$-f_n(x)=(g(x)-f_n(x))-g(x)< m-m=0implies 0<f_n(x)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 17 '18 at 21:31









        user293794user293794

        1,711613




        1,711613






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044455%2funiform-convergence-exercise%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen