Show that point does not belong to a plane
$begingroup$
Problem
Show that point $textbf{q}$ does not belong to plane defined by these 3 points:
$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$
Point $textbf{q}$ is defined as.
$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
Attempt to solve
Plane in vector form can be defined as:
$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$
Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as
$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$
$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$
$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now we can write the equation as:
$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$
I can form matrix equation:
$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
Now i can solve the equation with row redcution
$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$
Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$
Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?
linear-algebra vectors
$endgroup$
add a comment |
$begingroup$
Problem
Show that point $textbf{q}$ does not belong to plane defined by these 3 points:
$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$
Point $textbf{q}$ is defined as.
$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
Attempt to solve
Plane in vector form can be defined as:
$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$
Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as
$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$
$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$
$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now we can write the equation as:
$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$
I can form matrix equation:
$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
Now i can solve the equation with row redcution
$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$
Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$
Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?
linear-algebra vectors
$endgroup$
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52
add a comment |
$begingroup$
Problem
Show that point $textbf{q}$ does not belong to plane defined by these 3 points:
$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$
Point $textbf{q}$ is defined as.
$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
Attempt to solve
Plane in vector form can be defined as:
$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$
Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as
$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$
$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$
$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now we can write the equation as:
$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$
I can form matrix equation:
$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
Now i can solve the equation with row redcution
$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$
Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$
Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?
linear-algebra vectors
$endgroup$
Problem
Show that point $textbf{q}$ does not belong to plane defined by these 3 points:
$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$
Point $textbf{q}$ is defined as.
$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
Attempt to solve
Plane in vector form can be defined as:
$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$
Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as
$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$
$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$
$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now we can write the equation as:
$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$
Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$
I can form matrix equation:
$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$
$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$
Now i can solve the equation with row redcution
$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$
Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$
Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?
linear-algebra vectors
linear-algebra vectors
asked Dec 13 '18 at 1:17
TukiTuki
1,019416
1,019416
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52
add a comment |
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is
$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$
A point ${bf x}$ belongs to the plane if
$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$
If you set ${bf x} = {bf q}$ you'll find
$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$
So the point ${bf q}$ does not belong to the plane
$endgroup$
add a comment |
$begingroup$
Let me check your solution:
$$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$
Hence you made a mistake in solving for your $s$ and $t$.
Here is the RREF, we can see that the augmented matrix is not consistent.
octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
ans =
1 0 0
0 1 0
0 0 1
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037467%2fshow-that-point-does-not-belong-to-a-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is
$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$
A point ${bf x}$ belongs to the plane if
$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$
If you set ${bf x} = {bf q}$ you'll find
$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$
So the point ${bf q}$ does not belong to the plane
$endgroup$
add a comment |
$begingroup$
Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is
$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$
A point ${bf x}$ belongs to the plane if
$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$
If you set ${bf x} = {bf q}$ you'll find
$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$
So the point ${bf q}$ does not belong to the plane
$endgroup$
add a comment |
$begingroup$
Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is
$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$
A point ${bf x}$ belongs to the plane if
$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$
If you set ${bf x} = {bf q}$ you'll find
$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$
So the point ${bf q}$ does not belong to the plane
$endgroup$
Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is
$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$
A point ${bf x}$ belongs to the plane if
$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$
If you set ${bf x} = {bf q}$ you'll find
$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$
So the point ${bf q}$ does not belong to the plane
answered Dec 13 '18 at 1:27
caveraccaverac
14.6k31130
14.6k31130
add a comment |
add a comment |
$begingroup$
Let me check your solution:
$$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$
Hence you made a mistake in solving for your $s$ and $t$.
Here is the RREF, we can see that the augmented matrix is not consistent.
octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
ans =
1 0 0
0 1 0
0 0 1
$endgroup$
add a comment |
$begingroup$
Let me check your solution:
$$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$
Hence you made a mistake in solving for your $s$ and $t$.
Here is the RREF, we can see that the augmented matrix is not consistent.
octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
ans =
1 0 0
0 1 0
0 0 1
$endgroup$
add a comment |
$begingroup$
Let me check your solution:
$$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$
Hence you made a mistake in solving for your $s$ and $t$.
Here is the RREF, we can see that the augmented matrix is not consistent.
octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
ans =
1 0 0
0 1 0
0 0 1
$endgroup$
Let me check your solution:
$$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$
Hence you made a mistake in solving for your $s$ and $t$.
Here is the RREF, we can see that the augmented matrix is not consistent.
octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
ans =
1 0 0
0 1 0
0 0 1
answered Dec 13 '18 at 1:24
Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037467%2fshow-that-point-does-not-belong-to-a-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52