Show that point does not belong to a plane












1












$begingroup$


Problem



Show that point $textbf{q}$ does not belong to plane defined by these 3 points:



$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$



Point $textbf{q}$ is defined as.



$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



Attempt to solve



Plane in vector form can be defined as:



$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$



Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as



$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$



$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$



$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now we can write the equation as:



$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$



I can form matrix equation:



$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



Now i can solve the equation with row redcution



$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$



Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$



Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
    $endgroup$
    – amd
    Dec 13 '18 at 1:52
















1












$begingroup$


Problem



Show that point $textbf{q}$ does not belong to plane defined by these 3 points:



$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$



Point $textbf{q}$ is defined as.



$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



Attempt to solve



Plane in vector form can be defined as:



$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$



Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as



$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$



$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$



$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now we can write the equation as:



$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$



I can form matrix equation:



$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



Now i can solve the equation with row redcution



$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$



Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$



Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
    $endgroup$
    – amd
    Dec 13 '18 at 1:52














1












1








1





$begingroup$


Problem



Show that point $textbf{q}$ does not belong to plane defined by these 3 points:



$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$



Point $textbf{q}$ is defined as.



$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



Attempt to solve



Plane in vector form can be defined as:



$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$



Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as



$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$



$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$



$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now we can write the equation as:



$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$



I can form matrix equation:



$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



Now i can solve the equation with row redcution



$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$



Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$



Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?










share|cite|improve this question









$endgroup$




Problem



Show that point $textbf{q}$ does not belong to plane defined by these 3 points:



$$ textbf{p}_1 = begin{bmatrix} 2 \ 1 \ 1 end{bmatrix}, textbf{p}_2=begin{bmatrix} 0 \ 1 \ -1 end{bmatrix}, textbf{p}_3 = begin{bmatrix} 2 \ 4 \ 0 end{bmatrix} $$



Point $textbf{q}$ is defined as.



$$ textbf{q}=begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



Attempt to solve



Plane in vector form can be defined as:



$$ textbf{x} = textbf{p} + stextbf{u}+ ttextbf{v}, {s,t} in mathbb{R} $$



Where vectors $textbf{u}$ and $textbf{v} $ define the plane and $textbf{p}$ is point which belongs to the plane. let $textbf{p} = textbf{p}_2$ and vectors $textbf{u}$ and $textbf{v}$ can be defined as



$$ textbf{u} = textbf{p}_2 - textbf{p}_1, textbf{v} = textbf{p}_2 - textbf{p}_3 $$



$$ textbf{u} = begin{bmatrix} 0 - 2 \ 1 -1 \ -1 -1 end{bmatrix}, textbf{v} = begin{bmatrix} 0 - 2 \ 1 - 4 \ -1 - 0 end{bmatrix} $$



$$ textbf{u} = begin{bmatrix} -2 \ 0 \ -2 end{bmatrix}, textbf{v} = begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now we can write the equation as:



$$ textbf{x}= begin{bmatrix} 0 \ 1 \ 1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} $$



Now i want to show that $$ nexists {s,t} : textbf{p} + stext{u} + t textbf{v} = begin{bmatrix} 1 \ 1 \1 end{bmatrix} $$



I can form matrix equation:



$$begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} + s begin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 1 \ 1 end{bmatrix}-begin{bmatrix} 0 \ 1 \ -1 end{bmatrix} $$



$$ implies sbegin{bmatrix} -2 \ 0 \ -2 end{bmatrix} + t begin{bmatrix} -2 \ -3 \ -1 end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



$$ begin{bmatrix} -2 & -2 \ 0 & -3 \ -2 & -1 end{bmatrix} begin{bmatrix} s \ t end{bmatrix} = begin{bmatrix} 1 \ 0 \ 2 end{bmatrix} $$



Now i can solve the equation with row redcution



$$ begin{bmatrix} -2 & -2 & 1 \ 0 & -3 & 0 \ -2 & -1 & 2 end{bmatrix} $$



Solution is $$ s = -frac{15}{19}, t = frac{1}{19} $$



Problem is solution should be impossible. i Was trying to prove poin $textbf{q}$ doe $textbf{not}$ belong to plane. Is my approach correct or did something went wrong with my solution ?







linear-algebra vectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 13 '18 at 1:17









TukiTuki

1,019416




1,019416












  • $begingroup$
    Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
    $endgroup$
    – amd
    Dec 13 '18 at 1:52


















  • $begingroup$
    Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
    $endgroup$
    – amd
    Dec 13 '18 at 1:52
















$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52




$begingroup$
Check over your row-reduction. You should be ending up with the identity matrix, of which the bottom row indicates that the system is inconsistent.
$endgroup$
– amd
Dec 13 '18 at 1:52










2 Answers
2






active

oldest

votes


















2












$begingroup$

Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is



$$
hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
$$



A point ${bf x}$ belongs to the plane if



$$
hat{bf n}cdot({bf x} - {bf p}_1) = 0
$$



If you set ${bf x} = {bf q}$ you'll find



$$
hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
$$



So the point ${bf q}$ does not belong to the plane






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let me check your solution:



    $$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$



    Hence you made a mistake in solving for your $s$ and $t$.



    Here is the RREF, we can see that the augmented matrix is not consistent.



    octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
    ans =

    1 0 0
    0 1 0
    0 0 1





    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037467%2fshow-that-point-does-not-belong-to-a-plane%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is



      $$
      hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
      $$



      A point ${bf x}$ belongs to the plane if



      $$
      hat{bf n}cdot({bf x} - {bf p}_1) = 0
      $$



      If you set ${bf x} = {bf q}$ you'll find



      $$
      hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
      $$



      So the point ${bf q}$ does not belong to the plane






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is



        $$
        hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
        $$



        A point ${bf x}$ belongs to the plane if



        $$
        hat{bf n}cdot({bf x} - {bf p}_1) = 0
        $$



        If you set ${bf x} = {bf q}$ you'll find



        $$
        hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
        $$



        So the point ${bf q}$ does not belong to the plane






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is



          $$
          hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
          $$



          A point ${bf x}$ belongs to the plane if



          $$
          hat{bf n}cdot({bf x} - {bf p}_1) = 0
          $$



          If you set ${bf x} = {bf q}$ you'll find



          $$
          hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
          $$



          So the point ${bf q}$ does not belong to the plane






          share|cite|improve this answer









          $endgroup$



          Define ${bf u} = {bf p}_2 - {bf p}_1$ and ${bf v} = {bf p}_3 - {bf p}_1$, a normal vector to the plane is



          $$
          hat{bf n} = frac{{bf u}times {bf v}}{|{bf u}times {bf v}|} = frac{1}{sqrt{19}}pmatrix{3 \ -1 \ -3}
          $$



          A point ${bf x}$ belongs to the plane if



          $$
          hat{bf n}cdot({bf x} - {bf p}_1) = 0
          $$



          If you set ${bf x} = {bf q}$ you'll find



          $$
          hat{bf n}cdot({bf q} - {bf p}_1) = -frac{3}{sqrt{19}} not=0
          $$



          So the point ${bf q}$ does not belong to the plane







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 13 '18 at 1:27









          caveraccaverac

          14.6k31130




          14.6k31130























              1












              $begingroup$

              Let me check your solution:



              $$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$



              Hence you made a mistake in solving for your $s$ and $t$.



              Here is the RREF, we can see that the augmented matrix is not consistent.



              octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
              ans =

              1 0 0
              0 1 0
              0 0 1





              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let me check your solution:



                $$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$



                Hence you made a mistake in solving for your $s$ and $t$.



                Here is the RREF, we can see that the augmented matrix is not consistent.



                octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
                ans =

                1 0 0
                0 1 0
                0 0 1





                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let me check your solution:



                  $$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$



                  Hence you made a mistake in solving for your $s$ and $t$.



                  Here is the RREF, we can see that the augmented matrix is not consistent.



                  octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
                  ans =

                  1 0 0
                  0 1 0
                  0 0 1





                  share|cite|improve this answer









                  $endgroup$



                  Let me check your solution:



                  $$(-2) left( -frac{15}{19}right)+(-2) left( frac{1}{19}right)= left( frac{2}{19}right)(15-1) ne 1$$



                  Hence you made a mistake in solving for your $s$ and $t$.



                  Here is the RREF, we can see that the augmented matrix is not consistent.



                  octave:1> rref([-2 -2 1; 0 -3 0 ; -2 -1 2])
                  ans =

                  1 0 0
                  0 1 0
                  0 0 1






                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 13 '18 at 1:24









                  Siong Thye GohSiong Thye Goh

                  101k1466118




                  101k1466118






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037467%2fshow-that-point-does-not-belong-to-a-plane%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen