Find every $z$s that fit $cos(z) = -2$
$begingroup$
I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me
$cos(x)cosh(y) - isin(x)sinh(y) = -2$
$sin(x)=0$ so that imaginary part become $0$
now we have to find $cosh(y) = -2$ which is not true for no $y$.
is it right or i made a mistake in my substitutions?
complex-numbers
$endgroup$
add a comment |
$begingroup$
I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me
$cos(x)cosh(y) - isin(x)sinh(y) = -2$
$sin(x)=0$ so that imaginary part become $0$
now we have to find $cosh(y) = -2$ which is not true for no $y$.
is it right or i made a mistake in my substitutions?
complex-numbers
$endgroup$
add a comment |
$begingroup$
I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me
$cos(x)cosh(y) - isin(x)sinh(y) = -2$
$sin(x)=0$ so that imaginary part become $0$
now we have to find $cosh(y) = -2$ which is not true for no $y$.
is it right or i made a mistake in my substitutions?
complex-numbers
$endgroup$
I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me
$cos(x)cosh(y) - isin(x)sinh(y) = -2$
$sin(x)=0$ so that imaginary part become $0$
now we have to find $cosh(y) = -2$ which is not true for no $y$.
is it right or i made a mistake in my substitutions?
complex-numbers
complex-numbers
edited Jan 2 at 21:45
El borito
664216
664216
asked Jan 2 at 21:31
no0obno0ob
788
788
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: start with
$$
cos z=frac{e^{iz}+e^{-iz}}{2}
$$
and obtain a quadratic equation for $e^{iz}$.
$endgroup$
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
|
show 4 more comments
$begingroup$
I should have used $x=(2k+1)pi$ for the $x$ and then had the
$cos( (2k+1)pi ) cosh(y) = -2$
which made it $cosh(y) = 2$
$endgroup$
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
add a comment |
$begingroup$
Be:
$$
cos z=frac{e^{iz}+e^{-iz}}{2}=-2
$$
Then:
begin{eqnarray}
frac{e^{iz}+e^{-iz}}{2} &=& -2 \
e^{iz}+e^{-iz} &=& -4 \
e^{2iz} + 1 &=& -4e^{iz} \
left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
e^{iz} &=& -2 pm sqrt{3} \
end{eqnarray}
Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
begin{eqnarray}
e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
end{eqnarray}
There are two set solution to differents solutions:
begin{eqnarray}
z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
end{eqnarray}
For $z_{-}$:
begin{eqnarray}
z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
Then, with $kinmathbb{Z}$ the solutions are:
begin{eqnarray}
z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
$endgroup$
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
|
show 6 more comments
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059995%2ffind-every-zs-that-fit-cosz-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: start with
$$
cos z=frac{e^{iz}+e^{-iz}}{2}
$$
and obtain a quadratic equation for $e^{iz}$.
$endgroup$
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
|
show 4 more comments
$begingroup$
Hint: start with
$$
cos z=frac{e^{iz}+e^{-iz}}{2}
$$
and obtain a quadratic equation for $e^{iz}$.
$endgroup$
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
|
show 4 more comments
$begingroup$
Hint: start with
$$
cos z=frac{e^{iz}+e^{-iz}}{2}
$$
and obtain a quadratic equation for $e^{iz}$.
$endgroup$
Hint: start with
$$
cos z=frac{e^{iz}+e^{-iz}}{2}
$$
and obtain a quadratic equation for $e^{iz}$.
answered Jan 2 at 21:36
A.Γ.A.Γ.
22.9k32656
22.9k32656
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
|
show 4 more comments
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
$endgroup$
– no0ob
Jan 2 at 21:41
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
$endgroup$
– A.Γ.
Jan 2 at 21:43
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
What should $z$ be btw?
$endgroup$
– no0ob
Jan 2 at 21:48
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
$begingroup$
@no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
$endgroup$
– A.Γ.
Jan 2 at 21:52
1
1
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
$begingroup$
@no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
$endgroup$
– A.Γ.
Jan 2 at 22:10
|
show 4 more comments
$begingroup$
I should have used $x=(2k+1)pi$ for the $x$ and then had the
$cos( (2k+1)pi ) cosh(y) = -2$
which made it $cosh(y) = 2$
$endgroup$
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
add a comment |
$begingroup$
I should have used $x=(2k+1)pi$ for the $x$ and then had the
$cos( (2k+1)pi ) cosh(y) = -2$
which made it $cosh(y) = 2$
$endgroup$
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
add a comment |
$begingroup$
I should have used $x=(2k+1)pi$ for the $x$ and then had the
$cos( (2k+1)pi ) cosh(y) = -2$
which made it $cosh(y) = 2$
$endgroup$
I should have used $x=(2k+1)pi$ for the $x$ and then had the
$cos( (2k+1)pi ) cosh(y) = -2$
which made it $cosh(y) = 2$
edited Jan 2 at 22:55
El borito
664216
664216
answered Jan 2 at 21:58
no0obno0ob
788
788
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
add a comment |
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
1
1
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
$begingroup$
Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
$endgroup$
– A.Γ.
Jan 2 at 22:12
1
1
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
$begingroup$
Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
$endgroup$
– egreg
Jan 2 at 22:33
add a comment |
$begingroup$
Be:
$$
cos z=frac{e^{iz}+e^{-iz}}{2}=-2
$$
Then:
begin{eqnarray}
frac{e^{iz}+e^{-iz}}{2} &=& -2 \
e^{iz}+e^{-iz} &=& -4 \
e^{2iz} + 1 &=& -4e^{iz} \
left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
e^{iz} &=& -2 pm sqrt{3} \
end{eqnarray}
Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
begin{eqnarray}
e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
end{eqnarray}
There are two set solution to differents solutions:
begin{eqnarray}
z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
end{eqnarray}
For $z_{-}$:
begin{eqnarray}
z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
Then, with $kinmathbb{Z}$ the solutions are:
begin{eqnarray}
z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
$endgroup$
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
|
show 6 more comments
$begingroup$
Be:
$$
cos z=frac{e^{iz}+e^{-iz}}{2}=-2
$$
Then:
begin{eqnarray}
frac{e^{iz}+e^{-iz}}{2} &=& -2 \
e^{iz}+e^{-iz} &=& -4 \
e^{2iz} + 1 &=& -4e^{iz} \
left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
e^{iz} &=& -2 pm sqrt{3} \
end{eqnarray}
Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
begin{eqnarray}
e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
end{eqnarray}
There are two set solution to differents solutions:
begin{eqnarray}
z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
end{eqnarray}
For $z_{-}$:
begin{eqnarray}
z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
Then, with $kinmathbb{Z}$ the solutions are:
begin{eqnarray}
z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
$endgroup$
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
|
show 6 more comments
$begingroup$
Be:
$$
cos z=frac{e^{iz}+e^{-iz}}{2}=-2
$$
Then:
begin{eqnarray}
frac{e^{iz}+e^{-iz}}{2} &=& -2 \
e^{iz}+e^{-iz} &=& -4 \
e^{2iz} + 1 &=& -4e^{iz} \
left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
e^{iz} &=& -2 pm sqrt{3} \
end{eqnarray}
Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
begin{eqnarray}
e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
end{eqnarray}
There are two set solution to differents solutions:
begin{eqnarray}
z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
end{eqnarray}
For $z_{-}$:
begin{eqnarray}
z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
Then, with $kinmathbb{Z}$ the solutions are:
begin{eqnarray}
z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
$endgroup$
Be:
$$
cos z=frac{e^{iz}+e^{-iz}}{2}=-2
$$
Then:
begin{eqnarray}
frac{e^{iz}+e^{-iz}}{2} &=& -2 \
e^{iz}+e^{-iz} &=& -4 \
e^{2iz} + 1 &=& -4e^{iz} \
left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
e^{iz} &=& -2 pm sqrt{3} \
end{eqnarray}
Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
begin{eqnarray}
e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
end{eqnarray}
There are two set solution to differents solutions:
begin{eqnarray}
z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
end{eqnarray}
For $z_{-}$:
begin{eqnarray}
z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
Then, with $kinmathbb{Z}$ the solutions are:
begin{eqnarray}
z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
end{eqnarray}
edited Jan 3 at 5:46
answered Jan 2 at 21:56
El boritoEl borito
664216
664216
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
|
show 6 more comments
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
you mean $2kpi + 1$
$endgroup$
– no0ob
Jan 2 at 21:59
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Why $2kpi +1$?
$endgroup$
– El borito
Jan 2 at 22:02
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
$endgroup$
– no0ob
Jan 2 at 22:04
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
$begingroup$
oh, okey, I'm going to fix it
$endgroup$
– El borito
Jan 2 at 22:10
2
2
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
$begingroup$
$|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
$endgroup$
– A.Γ.
Jan 2 at 22:54
|
show 6 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059995%2ffind-every-zs-that-fit-cosz-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown