Find every $z$s that fit $cos(z) = -2$












3












$begingroup$


I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me



$cos(x)cosh(y) - isin(x)sinh(y) = -2$



$sin(x)=0$ so that imaginary part become $0$



now we have to find $cosh(y) = -2$ which is not true for no $y$.



is it right or i made a mistake in my substitutions?










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me



    $cos(x)cosh(y) - isin(x)sinh(y) = -2$



    $sin(x)=0$ so that imaginary part become $0$



    now we have to find $cosh(y) = -2$ which is not true for no $y$.



    is it right or i made a mistake in my substitutions?










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      3



      $begingroup$


      I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me



      $cos(x)cosh(y) - isin(x)sinh(y) = -2$



      $sin(x)=0$ so that imaginary part become $0$



      now we have to find $cosh(y) = -2$ which is not true for no $y$.



      is it right or i made a mistake in my substitutions?










      share|cite|improve this question











      $endgroup$




      I couldn't find any, I tried to write $cos(z)$ as $cos(x)cos(iy)-sin(x)sin(iy)$ which then gave me



      $cos(x)cosh(y) - isin(x)sinh(y) = -2$



      $sin(x)=0$ so that imaginary part become $0$



      now we have to find $cosh(y) = -2$ which is not true for no $y$.



      is it right or i made a mistake in my substitutions?







      complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 21:45









      El borito

      664216




      664216










      asked Jan 2 at 21:31









      no0obno0ob

      788




      788






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: start with
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}
          $$

          and obtain a quadratic equation for $e^{iz}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
            $endgroup$
            – no0ob
            Jan 2 at 21:41












          • $begingroup$
            If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
            $endgroup$
            – A.Γ.
            Jan 2 at 21:43












          • $begingroup$
            What should $z$ be btw?
            $endgroup$
            – no0ob
            Jan 2 at 21:48










          • $begingroup$
            @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
            $endgroup$
            – A.Γ.
            Jan 2 at 21:52






          • 1




            $begingroup$
            @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
            $endgroup$
            – A.Γ.
            Jan 2 at 22:10





















          2












          $begingroup$

          I should have used $x=(2k+1)pi$ for the $x$ and then had the



          $cos( (2k+1)pi ) cosh(y) = -2$



          which made it $cosh(y) = 2$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
            $endgroup$
            – A.Γ.
            Jan 2 at 22:12






          • 1




            $begingroup$
            Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
            $endgroup$
            – egreg
            Jan 2 at 22:33



















          0












          $begingroup$

          Be:
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}=-2
          $$

          Then:
          begin{eqnarray}
          frac{e^{iz}+e^{-iz}}{2} &=& -2 \
          e^{iz}+e^{-iz} &=& -4 \
          e^{2iz} + 1 &=& -4e^{iz} \
          left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
          e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
          e^{iz} &=& -2 pm sqrt{3} \
          end{eqnarray}

          Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
          begin{eqnarray}
          e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
          i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
          z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
          end{eqnarray}

          There are two set solution to differents solutions:
          begin{eqnarray}
          z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
          end{eqnarray}

          For $z_{-}$:
          begin{eqnarray}
          z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
          z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
          z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}

          Then, with $kinmathbb{Z}$ the solutions are:
          begin{eqnarray}
          z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            you mean $2kpi + 1$
            $endgroup$
            – no0ob
            Jan 2 at 21:59










          • $begingroup$
            Why $2kpi +1$?
            $endgroup$
            – El borito
            Jan 2 at 22:02










          • $begingroup$
            Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
            $endgroup$
            – no0ob
            Jan 2 at 22:04












          • $begingroup$
            oh, okey, I'm going to fix it
            $endgroup$
            – El borito
            Jan 2 at 22:10








          • 2




            $begingroup$
            $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
            $endgroup$
            – A.Γ.
            Jan 2 at 22:54












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059995%2ffind-every-zs-that-fit-cosz-2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint: start with
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}
          $$

          and obtain a quadratic equation for $e^{iz}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
            $endgroup$
            – no0ob
            Jan 2 at 21:41












          • $begingroup$
            If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
            $endgroup$
            – A.Γ.
            Jan 2 at 21:43












          • $begingroup$
            What should $z$ be btw?
            $endgroup$
            – no0ob
            Jan 2 at 21:48










          • $begingroup$
            @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
            $endgroup$
            – A.Γ.
            Jan 2 at 21:52






          • 1




            $begingroup$
            @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
            $endgroup$
            – A.Γ.
            Jan 2 at 22:10


















          1












          $begingroup$

          Hint: start with
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}
          $$

          and obtain a quadratic equation for $e^{iz}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
            $endgroup$
            – no0ob
            Jan 2 at 21:41












          • $begingroup$
            If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
            $endgroup$
            – A.Γ.
            Jan 2 at 21:43












          • $begingroup$
            What should $z$ be btw?
            $endgroup$
            – no0ob
            Jan 2 at 21:48










          • $begingroup$
            @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
            $endgroup$
            – A.Γ.
            Jan 2 at 21:52






          • 1




            $begingroup$
            @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
            $endgroup$
            – A.Γ.
            Jan 2 at 22:10
















          1












          1








          1





          $begingroup$

          Hint: start with
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}
          $$

          and obtain a quadratic equation for $e^{iz}$.






          share|cite|improve this answer









          $endgroup$



          Hint: start with
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}
          $$

          and obtain a quadratic equation for $e^{iz}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 2 at 21:36









          A.Γ.A.Γ.

          22.9k32656




          22.9k32656












          • $begingroup$
            i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
            $endgroup$
            – no0ob
            Jan 2 at 21:41












          • $begingroup$
            If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
            $endgroup$
            – A.Γ.
            Jan 2 at 21:43












          • $begingroup$
            What should $z$ be btw?
            $endgroup$
            – no0ob
            Jan 2 at 21:48










          • $begingroup$
            @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
            $endgroup$
            – A.Γ.
            Jan 2 at 21:52






          • 1




            $begingroup$
            @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
            $endgroup$
            – A.Γ.
            Jan 2 at 22:10




















          • $begingroup$
            i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
            $endgroup$
            – no0ob
            Jan 2 at 21:41












          • $begingroup$
            If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
            $endgroup$
            – A.Γ.
            Jan 2 at 21:43












          • $begingroup$
            What should $z$ be btw?
            $endgroup$
            – no0ob
            Jan 2 at 21:48










          • $begingroup$
            @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
            $endgroup$
            – A.Γ.
            Jan 2 at 21:52






          • 1




            $begingroup$
            @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
            $endgroup$
            – A.Γ.
            Jan 2 at 22:10


















          $begingroup$
          i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
          $endgroup$
          – no0ob
          Jan 2 at 21:41






          $begingroup$
          i got $exp(iz) = -2+sqrt(3)$ and $exp(iz) = -2-sqrt(3)$ which gets me that $e^x = -2+sqrt(3)$ which is negative on the right side and impossible :-?
          $endgroup$
          – no0ob
          Jan 2 at 21:41














          $begingroup$
          If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
          $endgroup$
          – A.Γ.
          Jan 2 at 21:43






          $begingroup$
          If $e^{iz}=-2pmsqrt{3}$ then $$e^{iz+ipi}=e^{ipi}(-2pmsqrt{3})=(-1)(-2pmsqrt{3})=2pmsqrt{3}$$ whith positive RHS.
          $endgroup$
          – A.Γ.
          Jan 2 at 21:43














          $begingroup$
          What should $z$ be btw?
          $endgroup$
          – no0ob
          Jan 2 at 21:48




          $begingroup$
          What should $z$ be btw?
          $endgroup$
          – no0ob
          Jan 2 at 21:48












          $begingroup$
          @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
          $endgroup$
          – A.Γ.
          Jan 2 at 21:52




          $begingroup$
          @no0ob Do you follow the argumentation? If $$e^{i(z+pi)}=2pmsqrt{3}$$ then how to find $i(z+pi)$?
          $endgroup$
          – A.Γ.
          Jan 2 at 21:52




          1




          1




          $begingroup$
          @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
          $endgroup$
          – A.Γ.
          Jan 2 at 22:10






          $begingroup$
          @no0ob Right, sorry, it should be every second zero of $sin x=0$ to make $cos x=-1$, i.e. $x=pi+2pi k$.
          $endgroup$
          – A.Γ.
          Jan 2 at 22:10













          2












          $begingroup$

          I should have used $x=(2k+1)pi$ for the $x$ and then had the



          $cos( (2k+1)pi ) cosh(y) = -2$



          which made it $cosh(y) = 2$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
            $endgroup$
            – A.Γ.
            Jan 2 at 22:12






          • 1




            $begingroup$
            Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
            $endgroup$
            – egreg
            Jan 2 at 22:33
















          2












          $begingroup$

          I should have used $x=(2k+1)pi$ for the $x$ and then had the



          $cos( (2k+1)pi ) cosh(y) = -2$



          which made it $cosh(y) = 2$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
            $endgroup$
            – A.Γ.
            Jan 2 at 22:12






          • 1




            $begingroup$
            Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
            $endgroup$
            – egreg
            Jan 2 at 22:33














          2












          2








          2





          $begingroup$

          I should have used $x=(2k+1)pi$ for the $x$ and then had the



          $cos( (2k+1)pi ) cosh(y) = -2$



          which made it $cosh(y) = 2$






          share|cite|improve this answer











          $endgroup$



          I should have used $x=(2k+1)pi$ for the $x$ and then had the



          $cos( (2k+1)pi ) cosh(y) = -2$



          which made it $cosh(y) = 2$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 2 at 22:55









          El borito

          664216




          664216










          answered Jan 2 at 21:58









          no0obno0ob

          788




          788








          • 1




            $begingroup$
            Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
            $endgroup$
            – A.Γ.
            Jan 2 at 22:12






          • 1




            $begingroup$
            Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
            $endgroup$
            – egreg
            Jan 2 at 22:33














          • 1




            $begingroup$
            Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
            $endgroup$
            – A.Γ.
            Jan 2 at 22:12






          • 1




            $begingroup$
            Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
            $endgroup$
            – egreg
            Jan 2 at 22:33








          1




          1




          $begingroup$
          Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
          $endgroup$
          – A.Γ.
          Jan 2 at 22:12




          $begingroup$
          Right, and here you get two solutions for $y$ with $pm$ (recall $2pmsqrt{3}$ in another approach).
          $endgroup$
          – A.Γ.
          Jan 2 at 22:12




          1




          1




          $begingroup$
          Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
          $endgroup$
          – egreg
          Jan 2 at 22:33




          $begingroup$
          Yes; since $cos xcosh y<0$, you need to have $cos x<0$ and therefore $x=pi+2kpi$.
          $endgroup$
          – egreg
          Jan 2 at 22:33











          0












          $begingroup$

          Be:
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}=-2
          $$

          Then:
          begin{eqnarray}
          frac{e^{iz}+e^{-iz}}{2} &=& -2 \
          e^{iz}+e^{-iz} &=& -4 \
          e^{2iz} + 1 &=& -4e^{iz} \
          left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
          e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
          e^{iz} &=& -2 pm sqrt{3} \
          end{eqnarray}

          Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
          begin{eqnarray}
          e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
          i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
          z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
          end{eqnarray}

          There are two set solution to differents solutions:
          begin{eqnarray}
          z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
          end{eqnarray}

          For $z_{-}$:
          begin{eqnarray}
          z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
          z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
          z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}

          Then, with $kinmathbb{Z}$ the solutions are:
          begin{eqnarray}
          z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            you mean $2kpi + 1$
            $endgroup$
            – no0ob
            Jan 2 at 21:59










          • $begingroup$
            Why $2kpi +1$?
            $endgroup$
            – El borito
            Jan 2 at 22:02










          • $begingroup$
            Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
            $endgroup$
            – no0ob
            Jan 2 at 22:04












          • $begingroup$
            oh, okey, I'm going to fix it
            $endgroup$
            – El borito
            Jan 2 at 22:10








          • 2




            $begingroup$
            $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
            $endgroup$
            – A.Γ.
            Jan 2 at 22:54
















          0












          $begingroup$

          Be:
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}=-2
          $$

          Then:
          begin{eqnarray}
          frac{e^{iz}+e^{-iz}}{2} &=& -2 \
          e^{iz}+e^{-iz} &=& -4 \
          e^{2iz} + 1 &=& -4e^{iz} \
          left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
          e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
          e^{iz} &=& -2 pm sqrt{3} \
          end{eqnarray}

          Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
          begin{eqnarray}
          e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
          i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
          z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
          end{eqnarray}

          There are two set solution to differents solutions:
          begin{eqnarray}
          z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
          end{eqnarray}

          For $z_{-}$:
          begin{eqnarray}
          z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
          z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
          z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}

          Then, with $kinmathbb{Z}$ the solutions are:
          begin{eqnarray}
          z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            you mean $2kpi + 1$
            $endgroup$
            – no0ob
            Jan 2 at 21:59










          • $begingroup$
            Why $2kpi +1$?
            $endgroup$
            – El borito
            Jan 2 at 22:02










          • $begingroup$
            Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
            $endgroup$
            – no0ob
            Jan 2 at 22:04












          • $begingroup$
            oh, okey, I'm going to fix it
            $endgroup$
            – El borito
            Jan 2 at 22:10








          • 2




            $begingroup$
            $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
            $endgroup$
            – A.Γ.
            Jan 2 at 22:54














          0












          0








          0





          $begingroup$

          Be:
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}=-2
          $$

          Then:
          begin{eqnarray}
          frac{e^{iz}+e^{-iz}}{2} &=& -2 \
          e^{iz}+e^{-iz} &=& -4 \
          e^{2iz} + 1 &=& -4e^{iz} \
          left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
          e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
          e^{iz} &=& -2 pm sqrt{3} \
          end{eqnarray}

          Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
          begin{eqnarray}
          e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
          i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
          z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
          end{eqnarray}

          There are two set solution to differents solutions:
          begin{eqnarray}
          z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
          end{eqnarray}

          For $z_{-}$:
          begin{eqnarray}
          z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
          z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
          z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}

          Then, with $kinmathbb{Z}$ the solutions are:
          begin{eqnarray}
          z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}






          share|cite|improve this answer











          $endgroup$



          Be:
          $$
          cos z=frac{e^{iz}+e^{-iz}}{2}=-2
          $$

          Then:
          begin{eqnarray}
          frac{e^{iz}+e^{-iz}}{2} &=& -2 \
          e^{iz}+e^{-iz} &=& -4 \
          e^{2iz} + 1 &=& -4e^{iz} \
          left(e^{iz}right)^2 + 4left(e^{iz}right) + 1 &=& 0 \
          e^{iz} &=& frac{-4 pm sqrt{16-4}}{2} \
          e^{iz} &=& -2 pm sqrt{3} \
          end{eqnarray}

          Then since $e^{iz}=cos(z)+isin(z)$, $e^{iz}=e^{i(z+2kpi)}$ with $kinmathbb{Z}$:
          begin{eqnarray}
          e^{i(z+2k_1pi)} &=& -2 pm sqrt{3} \
          i(z +2k_1pi) &=& lnleft(-2 pm sqrt{3}right) \
          z &=& 2k_1pi - ilnleft(-2 pm sqrt{3}right) \
          end{eqnarray}

          There are two set solution to differents solutions:
          begin{eqnarray}
          z_{+} &=& 2k_1pi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& 2k_1pi - ilnleft(-2 - sqrt{3}right) \
          end{eqnarray}

          For $z_{-}$:
          begin{eqnarray}
          z_{-} &=& 2k_1pi - ilnleft(left(2 + sqrt{3}right)e^{-i(1+2k_2)pi}right) \
          z_{-} &=& 2k_1pi - ileft[lnleft(2 + sqrt{3}right)-i(1+2k_2)piright] \
          z_{-} &=& 2k_1pi - (1+2k_2)pi - ilnleft(2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}

          Then, with $kinmathbb{Z}$ the solutions are:
          begin{eqnarray}
          z_{+} &=& 2kpi - ilnleft(-2 + sqrt{3}right) \
          z_{-} &=& (1+2k)pi - ilnleft(2 + sqrt{3}right) \
          end{eqnarray}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 3 at 5:46

























          answered Jan 2 at 21:56









          El boritoEl borito

          664216




          664216












          • $begingroup$
            you mean $2kpi + 1$
            $endgroup$
            – no0ob
            Jan 2 at 21:59










          • $begingroup$
            Why $2kpi +1$?
            $endgroup$
            – El borito
            Jan 2 at 22:02










          • $begingroup$
            Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
            $endgroup$
            – no0ob
            Jan 2 at 22:04












          • $begingroup$
            oh, okey, I'm going to fix it
            $endgroup$
            – El borito
            Jan 2 at 22:10








          • 2




            $begingroup$
            $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
            $endgroup$
            – A.Γ.
            Jan 2 at 22:54


















          • $begingroup$
            you mean $2kpi + 1$
            $endgroup$
            – no0ob
            Jan 2 at 21:59










          • $begingroup$
            Why $2kpi +1$?
            $endgroup$
            – El borito
            Jan 2 at 22:02










          • $begingroup$
            Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
            $endgroup$
            – no0ob
            Jan 2 at 22:04












          • $begingroup$
            oh, okey, I'm going to fix it
            $endgroup$
            – El borito
            Jan 2 at 22:10








          • 2




            $begingroup$
            $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
            $endgroup$
            – A.Γ.
            Jan 2 at 22:54
















          $begingroup$
          you mean $2kpi + 1$
          $endgroup$
          – no0ob
          Jan 2 at 21:59




          $begingroup$
          you mean $2kpi + 1$
          $endgroup$
          – no0ob
          Jan 2 at 21:59












          $begingroup$
          Why $2kpi +1$?
          $endgroup$
          – El borito
          Jan 2 at 22:02




          $begingroup$
          Why $2kpi +1$?
          $endgroup$
          – El borito
          Jan 2 at 22:02












          $begingroup$
          Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
          $endgroup$
          – no0ob
          Jan 2 at 22:04






          $begingroup$
          Cause i had answered my approach using $(2k+1)pi$ there should be one solution i believe :-?
          $endgroup$
          – no0ob
          Jan 2 at 22:04














          $begingroup$
          oh, okey, I'm going to fix it
          $endgroup$
          – El borito
          Jan 2 at 22:10






          $begingroup$
          oh, okey, I'm going to fix it
          $endgroup$
          – El borito
          Jan 2 at 22:10






          2




          2




          $begingroup$
          $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
          $endgroup$
          – A.Γ.
          Jan 2 at 22:54




          $begingroup$
          $|-2pmsqrt{3}|=sqrt{7}$ is nonsense. Are you thinking of $-2pmcolor{red}{i}sqrt{3}$ here?
          $endgroup$
          – A.Γ.
          Jan 2 at 22:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059995%2ffind-every-zs-that-fit-cosz-2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen