$lim_{xto 0}frac{f(ax)}{x},$ knowing the limit of $frac{f(x)}{x}$
$begingroup$
If we know that
$$lim_{x rightarrow 0}{frac{f(x)}{x}}rightarrow c,; text{ for a given }cinmathbb{R}.$$ Show that
$$
lim_{x rightarrow 0}{frac{f(ax)}{x}}rightarrow ac; text{ for any } ainmathbb{R}setminus{{0}}.
$$
We definitely know from the above (using the product rule for limits)
$$
lim_{x rightarrow 0}{f(x)}rightarrow 0 ;;text{ holds. }
$$
Don't know if that helps.
calculus limits
$endgroup$
add a comment |
$begingroup$
If we know that
$$lim_{x rightarrow 0}{frac{f(x)}{x}}rightarrow c,; text{ for a given }cinmathbb{R}.$$ Show that
$$
lim_{x rightarrow 0}{frac{f(ax)}{x}}rightarrow ac; text{ for any } ainmathbb{R}setminus{{0}}.
$$
We definitely know from the above (using the product rule for limits)
$$
lim_{x rightarrow 0}{f(x)}rightarrow 0 ;;text{ holds. }
$$
Don't know if that helps.
calculus limits
$endgroup$
3
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58
add a comment |
$begingroup$
If we know that
$$lim_{x rightarrow 0}{frac{f(x)}{x}}rightarrow c,; text{ for a given }cinmathbb{R}.$$ Show that
$$
lim_{x rightarrow 0}{frac{f(ax)}{x}}rightarrow ac; text{ for any } ainmathbb{R}setminus{{0}}.
$$
We definitely know from the above (using the product rule for limits)
$$
lim_{x rightarrow 0}{f(x)}rightarrow 0 ;;text{ holds. }
$$
Don't know if that helps.
calculus limits
$endgroup$
If we know that
$$lim_{x rightarrow 0}{frac{f(x)}{x}}rightarrow c,; text{ for a given }cinmathbb{R}.$$ Show that
$$
lim_{x rightarrow 0}{frac{f(ax)}{x}}rightarrow ac; text{ for any } ainmathbb{R}setminus{{0}}.
$$
We definitely know from the above (using the product rule for limits)
$$
lim_{x rightarrow 0}{f(x)}rightarrow 0 ;;text{ holds. }
$$
Don't know if that helps.
calculus limits
calculus limits
edited Jan 2 at 20:15
Namaste
1
1
asked Jan 2 at 19:55
JulesJules
1087
1087
3
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58
add a comment |
3
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58
3
3
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
As this is elementary, this may require an $epsilon-delta$ argument.
We want to make the following quantity small:
$$left|frac{f(ax)}{x}-acright|$$
Observe that
$$left|frac{f(ax)}{x}-acright|= left|frac{f(ax)}{ax}a-acright|= |a|left|frac{f(ax)}{ax}-cright|$$
and this last factor can be made small because $f(x)/x to c$. It is a good exercise on this level to make this into a rigorous proof.
$endgroup$
add a comment |
$begingroup$
Hint:
Consider $$limlimits_{x rightarrow 0}{frac{f(ax)}{ax}}$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0}{{f(ax)}over x}=lim_{xrightarrow 0}a{{f(ax)}over {ax}}=ac$$
$endgroup$
add a comment |
$begingroup$
Let $$lim_{xto 0}{f(x)over x}=l$$therefore $$lim_{xto 0}{f(ax)over x}=lim_{xto 0}a{f(ax)over ax}=alim_{xto 0}{f(x)over x}=al$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059897%2flim-x-to-0-fracfaxx-knowing-the-limit-of-fracfxx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As this is elementary, this may require an $epsilon-delta$ argument.
We want to make the following quantity small:
$$left|frac{f(ax)}{x}-acright|$$
Observe that
$$left|frac{f(ax)}{x}-acright|= left|frac{f(ax)}{ax}a-acright|= |a|left|frac{f(ax)}{ax}-cright|$$
and this last factor can be made small because $f(x)/x to c$. It is a good exercise on this level to make this into a rigorous proof.
$endgroup$
add a comment |
$begingroup$
As this is elementary, this may require an $epsilon-delta$ argument.
We want to make the following quantity small:
$$left|frac{f(ax)}{x}-acright|$$
Observe that
$$left|frac{f(ax)}{x}-acright|= left|frac{f(ax)}{ax}a-acright|= |a|left|frac{f(ax)}{ax}-cright|$$
and this last factor can be made small because $f(x)/x to c$. It is a good exercise on this level to make this into a rigorous proof.
$endgroup$
add a comment |
$begingroup$
As this is elementary, this may require an $epsilon-delta$ argument.
We want to make the following quantity small:
$$left|frac{f(ax)}{x}-acright|$$
Observe that
$$left|frac{f(ax)}{x}-acright|= left|frac{f(ax)}{ax}a-acright|= |a|left|frac{f(ax)}{ax}-cright|$$
and this last factor can be made small because $f(x)/x to c$. It is a good exercise on this level to make this into a rigorous proof.
$endgroup$
As this is elementary, this may require an $epsilon-delta$ argument.
We want to make the following quantity small:
$$left|frac{f(ax)}{x}-acright|$$
Observe that
$$left|frac{f(ax)}{x}-acright|= left|frac{f(ax)}{ax}a-acright|= |a|left|frac{f(ax)}{ax}-cright|$$
and this last factor can be made small because $f(x)/x to c$. It is a good exercise on this level to make this into a rigorous proof.
answered Jan 2 at 20:17
Math_QEDMath_QED
7,81831554
7,81831554
add a comment |
add a comment |
$begingroup$
Hint:
Consider $$limlimits_{x rightarrow 0}{frac{f(ax)}{ax}}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Consider $$limlimits_{x rightarrow 0}{frac{f(ax)}{ax}}$$
$endgroup$
add a comment |
$begingroup$
Hint:
Consider $$limlimits_{x rightarrow 0}{frac{f(ax)}{ax}}$$
$endgroup$
Hint:
Consider $$limlimits_{x rightarrow 0}{frac{f(ax)}{ax}}$$
answered Jan 2 at 19:58
HenryHenry
101k482169
101k482169
add a comment |
add a comment |
$begingroup$
$$lim_{xrightarrow 0}{{f(ax)}over x}=lim_{xrightarrow 0}a{{f(ax)}over {ax}}=ac$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0}{{f(ax)}over x}=lim_{xrightarrow 0}a{{f(ax)}over {ax}}=ac$$
$endgroup$
add a comment |
$begingroup$
$$lim_{xrightarrow 0}{{f(ax)}over x}=lim_{xrightarrow 0}a{{f(ax)}over {ax}}=ac$$
$endgroup$
$$lim_{xrightarrow 0}{{f(ax)}over x}=lim_{xrightarrow 0}a{{f(ax)}over {ax}}=ac$$
edited Jan 3 at 8:28
Math_QED
7,81831554
7,81831554
answered Jan 2 at 19:58
Tsemo AristideTsemo Aristide
60.1k11446
60.1k11446
add a comment |
add a comment |
$begingroup$
Let $$lim_{xto 0}{f(x)over x}=l$$therefore $$lim_{xto 0}{f(ax)over x}=lim_{xto 0}a{f(ax)over ax}=alim_{xto 0}{f(x)over x}=al$$
$endgroup$
add a comment |
$begingroup$
Let $$lim_{xto 0}{f(x)over x}=l$$therefore $$lim_{xto 0}{f(ax)over x}=lim_{xto 0}a{f(ax)over ax}=alim_{xto 0}{f(x)over x}=al$$
$endgroup$
add a comment |
$begingroup$
Let $$lim_{xto 0}{f(x)over x}=l$$therefore $$lim_{xto 0}{f(ax)over x}=lim_{xto 0}a{f(ax)over ax}=alim_{xto 0}{f(x)over x}=al$$
$endgroup$
Let $$lim_{xto 0}{f(x)over x}=l$$therefore $$lim_{xto 0}{f(ax)over x}=lim_{xto 0}a{f(ax)over ax}=alim_{xto 0}{f(x)over x}=al$$
answered Jan 2 at 20:02
Mostafa AyazMostafa Ayaz
18.3k31040
18.3k31040
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059897%2flim-x-to-0-fracfaxx-knowing-the-limit-of-fracfxx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Hint: defining $y = ax$, we have $limlimits_{xto 0}frac{f(ax)}{x} = limlimits_{yto 0}frac{f(y)}{y/a}$.
$endgroup$
– user3482749
Jan 2 at 19:58