Proving $mathbb{D}(xi|mathcal{D})=mathbb{E}(xi^2|mathcal{D}) -(mathbb{E}(xi|mathcal{D}))^2 $ [closed]












0












$begingroup$


The conditional dispersion of random variable $xi$ according $sigma$-algebra $mathcal{D}$ is a random variable: $mathbb{D}(xi|mathcal{D})=mathbb{E}((xi - mathbb{E}(xi|mathcal{D}))^2|mathcal{D}).$ I need to show that next to equalities is correct



$mathbb{D}(xi|mathcal{D})=mathbb{E}(xi^2|mathcal{D}) -(mathbb{E}(xi|mathcal{D}))^2 $



and



$mathbb{D}xi=mathbb{E}mathbb{D}(xi|mathcal{D})+mathbb{D}mathbb{E}(xi|mathcal{D})$.



So how to begin and what properties to use?










share|cite|improve this question









$endgroup$



closed as off-topic by Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus Jan 3 at 0:40


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus

If this question can be reworded to fit the rules in the help center, please edit the question.





















    0












    $begingroup$


    The conditional dispersion of random variable $xi$ according $sigma$-algebra $mathcal{D}$ is a random variable: $mathbb{D}(xi|mathcal{D})=mathbb{E}((xi - mathbb{E}(xi|mathcal{D}))^2|mathcal{D}).$ I need to show that next to equalities is correct



    $mathbb{D}(xi|mathcal{D})=mathbb{E}(xi^2|mathcal{D}) -(mathbb{E}(xi|mathcal{D}))^2 $



    and



    $mathbb{D}xi=mathbb{E}mathbb{D}(xi|mathcal{D})+mathbb{D}mathbb{E}(xi|mathcal{D})$.



    So how to begin and what properties to use?










    share|cite|improve this question









    $endgroup$



    closed as off-topic by Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus Jan 3 at 0:40


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus

    If this question can be reworded to fit the rules in the help center, please edit the question.



















      0












      0








      0





      $begingroup$


      The conditional dispersion of random variable $xi$ according $sigma$-algebra $mathcal{D}$ is a random variable: $mathbb{D}(xi|mathcal{D})=mathbb{E}((xi - mathbb{E}(xi|mathcal{D}))^2|mathcal{D}).$ I need to show that next to equalities is correct



      $mathbb{D}(xi|mathcal{D})=mathbb{E}(xi^2|mathcal{D}) -(mathbb{E}(xi|mathcal{D}))^2 $



      and



      $mathbb{D}xi=mathbb{E}mathbb{D}(xi|mathcal{D})+mathbb{D}mathbb{E}(xi|mathcal{D})$.



      So how to begin and what properties to use?










      share|cite|improve this question









      $endgroup$




      The conditional dispersion of random variable $xi$ according $sigma$-algebra $mathcal{D}$ is a random variable: $mathbb{D}(xi|mathcal{D})=mathbb{E}((xi - mathbb{E}(xi|mathcal{D}))^2|mathcal{D}).$ I need to show that next to equalities is correct



      $mathbb{D}(xi|mathcal{D})=mathbb{E}(xi^2|mathcal{D}) -(mathbb{E}(xi|mathcal{D}))^2 $



      and



      $mathbb{D}xi=mathbb{E}mathbb{D}(xi|mathcal{D})+mathbb{D}mathbb{E}(xi|mathcal{D})$.



      So how to begin and what properties to use?







      probability probability-theory conditional-expectation random






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 2 at 20:54









      AtstovasAtstovas

      1139




      1139




      closed as off-topic by Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus Jan 3 at 0:40


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus

      If this question can be reworded to fit the rules in the help center, please edit the question.







      closed as off-topic by Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus Jan 3 at 0:40


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Did, Davide Giraudo, José Carlos Santos, Cesareo, Leucippus

      If this question can be reworded to fit the rules in the help center, please edit the question.






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          First, expand out the square:
          $$ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right).$$



          Then use:




          • Linearity:


          $$ mathbb E(X_1 + X_2 | mathcal D) = mathbb E(X_1 | mathcal D) + mathbb E(X_2 | mathcal D), mathbb E(aX|mathcal D)=amathbb E(X|mathcal D).$$




          • Pulling out known factors: if $X$ is $mathcal D$-measurable, then $$ mathbb E(XY| mathcal D) = X mathbb E(Y | mathcal D).$$


          (And remember, $mathbb E(xi | mathcal D)$ is $mathcal D$-measurable, by definition. Hence $mathbb E(xi | mathcal D)^2$ is $mathcal D$-measurable too.)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
            $endgroup$
            – Atstovas
            Jan 3 at 10:17










          • $begingroup$
            @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
            $endgroup$
            – Kenny Wong
            Jan 3 at 11:54












          • $begingroup$
            Thank you! But I don’t know how to do the second equality
            $endgroup$
            – Atstovas
            Jan 3 at 12:00


















          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          First, expand out the square:
          $$ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right).$$



          Then use:




          • Linearity:


          $$ mathbb E(X_1 + X_2 | mathcal D) = mathbb E(X_1 | mathcal D) + mathbb E(X_2 | mathcal D), mathbb E(aX|mathcal D)=amathbb E(X|mathcal D).$$




          • Pulling out known factors: if $X$ is $mathcal D$-measurable, then $$ mathbb E(XY| mathcal D) = X mathbb E(Y | mathcal D).$$


          (And remember, $mathbb E(xi | mathcal D)$ is $mathcal D$-measurable, by definition. Hence $mathbb E(xi | mathcal D)^2$ is $mathcal D$-measurable too.)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
            $endgroup$
            – Atstovas
            Jan 3 at 10:17










          • $begingroup$
            @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
            $endgroup$
            – Kenny Wong
            Jan 3 at 11:54












          • $begingroup$
            Thank you! But I don’t know how to do the second equality
            $endgroup$
            – Atstovas
            Jan 3 at 12:00
















          0












          $begingroup$

          First, expand out the square:
          $$ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right).$$



          Then use:




          • Linearity:


          $$ mathbb E(X_1 + X_2 | mathcal D) = mathbb E(X_1 | mathcal D) + mathbb E(X_2 | mathcal D), mathbb E(aX|mathcal D)=amathbb E(X|mathcal D).$$




          • Pulling out known factors: if $X$ is $mathcal D$-measurable, then $$ mathbb E(XY| mathcal D) = X mathbb E(Y | mathcal D).$$


          (And remember, $mathbb E(xi | mathcal D)$ is $mathcal D$-measurable, by definition. Hence $mathbb E(xi | mathcal D)^2$ is $mathcal D$-measurable too.)






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
            $endgroup$
            – Atstovas
            Jan 3 at 10:17










          • $begingroup$
            @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
            $endgroup$
            – Kenny Wong
            Jan 3 at 11:54












          • $begingroup$
            Thank you! But I don’t know how to do the second equality
            $endgroup$
            – Atstovas
            Jan 3 at 12:00














          0












          0








          0





          $begingroup$

          First, expand out the square:
          $$ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right).$$



          Then use:




          • Linearity:


          $$ mathbb E(X_1 + X_2 | mathcal D) = mathbb E(X_1 | mathcal D) + mathbb E(X_2 | mathcal D), mathbb E(aX|mathcal D)=amathbb E(X|mathcal D).$$




          • Pulling out known factors: if $X$ is $mathcal D$-measurable, then $$ mathbb E(XY| mathcal D) = X mathbb E(Y | mathcal D).$$


          (And remember, $mathbb E(xi | mathcal D)$ is $mathcal D$-measurable, by definition. Hence $mathbb E(xi | mathcal D)^2$ is $mathcal D$-measurable too.)






          share|cite|improve this answer











          $endgroup$



          First, expand out the square:
          $$ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right).$$



          Then use:




          • Linearity:


          $$ mathbb E(X_1 + X_2 | mathcal D) = mathbb E(X_1 | mathcal D) + mathbb E(X_2 | mathcal D), mathbb E(aX|mathcal D)=amathbb E(X|mathcal D).$$




          • Pulling out known factors: if $X$ is $mathcal D$-measurable, then $$ mathbb E(XY| mathcal D) = X mathbb E(Y | mathcal D).$$


          (And remember, $mathbb E(xi | mathcal D)$ is $mathcal D$-measurable, by definition. Hence $mathbb E(xi | mathcal D)^2$ is $mathcal D$-measurable too.)







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 2 at 21:45

























          answered Jan 2 at 21:19









          Kenny WongKenny Wong

          19.2k21441




          19.2k21441












          • $begingroup$
            Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
            $endgroup$
            – Atstovas
            Jan 3 at 10:17










          • $begingroup$
            @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
            $endgroup$
            – Kenny Wong
            Jan 3 at 11:54












          • $begingroup$
            Thank you! But I don’t know how to do the second equality
            $endgroup$
            – Atstovas
            Jan 3 at 12:00


















          • $begingroup$
            Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
            $endgroup$
            – Atstovas
            Jan 3 at 10:17










          • $begingroup$
            @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
            $endgroup$
            – Kenny Wong
            Jan 3 at 11:54












          • $begingroup$
            Thank you! But I don’t know how to do the second equality
            $endgroup$
            – Atstovas
            Jan 3 at 12:00
















          $begingroup$
          Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
          $endgroup$
          – Atstovas
          Jan 3 at 10:17




          $begingroup$
          Can you check if I did it right? $ mathbb D(xi | mathcal D) = mathbb E left( xi^2 - 2 xi mathbb E(xi | mathcal D) + mathbb E (xi | mathcal D)^2 mid mathcal D right)=mathbb{E}(xi^2|mathcal{D})-2xi mathbb{E}(xi |mathcal{D})+mathbb{E}(xi|mathcal{D})^2=mathbb{E}(xi^2|mathcal{D})-mathbb{E}(xi|mathcal{D})^2?$
          $endgroup$
          – Atstovas
          Jan 3 at 10:17












          $begingroup$
          @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
          $endgroup$
          – Kenny Wong
          Jan 3 at 11:54






          $begingroup$
          @Atstovas Should be $mathbb E(xi^2 | mathcal D) - 2 mathbb E(xi | mathcal D)^2 + mathbb E(xi | mathcal D)^2$.
          $endgroup$
          – Kenny Wong
          Jan 3 at 11:54














          $begingroup$
          Thank you! But I don’t know how to do the second equality
          $endgroup$
          – Atstovas
          Jan 3 at 12:00




          $begingroup$
          Thank you! But I don’t know how to do the second equality
          $endgroup$
          – Atstovas
          Jan 3 at 12:00



          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen