if $f$ is linear transformation, is proof that $f(U)$ is linear subspace and find its dim
$begingroup$
Given is Linear transformation $f in L(mathbb R^3, mathbb R[t]_3)$ such that:
$ker f = span([1,1,1]^T) $
Given is also $U = span([3,1,-1]^T,[-1,1,3]^T)$
Proof that $f(U)$ is linear subspace in $mathbb R[t]_3$ and find its dim
My try
$$ f(U) = left{ f(u) | u in U right} $$
Take a random $u in U$. Then
$$ u = alpha[3,1,-1]^T + beta[-1,1,3]^T$$
We know that $f$ is linear transformation so:
$$f(u) = alpha f left([3,1,-1]^T right) + beta fleft([-1,1,3]^Tright)$$
I check if the scalar multiplies or adds vectors from the subspace derives from $f(U)$
$$ gamma f(u) = (alphagamma) f left([3,1,-1]^T right) + (betagamma) fleft([-1,1,3]^Tright)$$
and
$$f(u)+f(u') = (alpha + alpha') f left([3,1,-1]^T right) + (beta + beta') fleft([-1,1,3]^Tright) $$
ok. So this is linear subspace.
Now I am going to find dim.
But $[3,1,-1]^T,[-1,1,3]^T $ are linearly independent. So
$$ dim f(U) = 2 $$
What is the problem?
The problem is that the correct answer should be
$$ dim f(U) = 1 $$
I suspect that it comes to $ker f = span([1,1,1]^T) $ because $ker f in U $. But why does it matter? I do not think that this is any theorem on that situation
linear-algebra proof-verification linear-transformations
$endgroup$
add a comment |
$begingroup$
Given is Linear transformation $f in L(mathbb R^3, mathbb R[t]_3)$ such that:
$ker f = span([1,1,1]^T) $
Given is also $U = span([3,1,-1]^T,[-1,1,3]^T)$
Proof that $f(U)$ is linear subspace in $mathbb R[t]_3$ and find its dim
My try
$$ f(U) = left{ f(u) | u in U right} $$
Take a random $u in U$. Then
$$ u = alpha[3,1,-1]^T + beta[-1,1,3]^T$$
We know that $f$ is linear transformation so:
$$f(u) = alpha f left([3,1,-1]^T right) + beta fleft([-1,1,3]^Tright)$$
I check if the scalar multiplies or adds vectors from the subspace derives from $f(U)$
$$ gamma f(u) = (alphagamma) f left([3,1,-1]^T right) + (betagamma) fleft([-1,1,3]^Tright)$$
and
$$f(u)+f(u') = (alpha + alpha') f left([3,1,-1]^T right) + (beta + beta') fleft([-1,1,3]^Tright) $$
ok. So this is linear subspace.
Now I am going to find dim.
But $[3,1,-1]^T,[-1,1,3]^T $ are linearly independent. So
$$ dim f(U) = 2 $$
What is the problem?
The problem is that the correct answer should be
$$ dim f(U) = 1 $$
I suspect that it comes to $ker f = span([1,1,1]^T) $ because $ker f in U $. But why does it matter? I do not think that this is any theorem on that situation
linear-algebra proof-verification linear-transformations
$endgroup$
add a comment |
$begingroup$
Given is Linear transformation $f in L(mathbb R^3, mathbb R[t]_3)$ such that:
$ker f = span([1,1,1]^T) $
Given is also $U = span([3,1,-1]^T,[-1,1,3]^T)$
Proof that $f(U)$ is linear subspace in $mathbb R[t]_3$ and find its dim
My try
$$ f(U) = left{ f(u) | u in U right} $$
Take a random $u in U$. Then
$$ u = alpha[3,1,-1]^T + beta[-1,1,3]^T$$
We know that $f$ is linear transformation so:
$$f(u) = alpha f left([3,1,-1]^T right) + beta fleft([-1,1,3]^Tright)$$
I check if the scalar multiplies or adds vectors from the subspace derives from $f(U)$
$$ gamma f(u) = (alphagamma) f left([3,1,-1]^T right) + (betagamma) fleft([-1,1,3]^Tright)$$
and
$$f(u)+f(u') = (alpha + alpha') f left([3,1,-1]^T right) + (beta + beta') fleft([-1,1,3]^Tright) $$
ok. So this is linear subspace.
Now I am going to find dim.
But $[3,1,-1]^T,[-1,1,3]^T $ are linearly independent. So
$$ dim f(U) = 2 $$
What is the problem?
The problem is that the correct answer should be
$$ dim f(U) = 1 $$
I suspect that it comes to $ker f = span([1,1,1]^T) $ because $ker f in U $. But why does it matter? I do not think that this is any theorem on that situation
linear-algebra proof-verification linear-transformations
$endgroup$
Given is Linear transformation $f in L(mathbb R^3, mathbb R[t]_3)$ such that:
$ker f = span([1,1,1]^T) $
Given is also $U = span([3,1,-1]^T,[-1,1,3]^T)$
Proof that $f(U)$ is linear subspace in $mathbb R[t]_3$ and find its dim
My try
$$ f(U) = left{ f(u) | u in U right} $$
Take a random $u in U$. Then
$$ u = alpha[3,1,-1]^T + beta[-1,1,3]^T$$
We know that $f$ is linear transformation so:
$$f(u) = alpha f left([3,1,-1]^T right) + beta fleft([-1,1,3]^Tright)$$
I check if the scalar multiplies or adds vectors from the subspace derives from $f(U)$
$$ gamma f(u) = (alphagamma) f left([3,1,-1]^T right) + (betagamma) fleft([-1,1,3]^Tright)$$
and
$$f(u)+f(u') = (alpha + alpha') f left([3,1,-1]^T right) + (beta + beta') fleft([-1,1,3]^Tright) $$
ok. So this is linear subspace.
Now I am going to find dim.
But $[3,1,-1]^T,[-1,1,3]^T $ are linearly independent. So
$$ dim f(U) = 2 $$
What is the problem?
The problem is that the correct answer should be
$$ dim f(U) = 1 $$
I suspect that it comes to $ker f = span([1,1,1]^T) $ because $ker f in U $. But why does it matter? I do not think that this is any theorem on that situation
linear-algebra proof-verification linear-transformations
linear-algebra proof-verification linear-transformations
asked Jan 5 at 11:18
VirtualUserVirtualUser
1,303317
1,303317
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$f(begin{bmatrix}3&1&-1end{bmatrix}^T),f(begin{bmatrix}-1&1&3end{bmatrix}^T)$ might not be linearly independent.
Notice that $begin{bmatrix}3\1\-1end{bmatrix}=2begin{bmatrix}1\1\1end{bmatrix}-begin{bmatrix}-1\1\3end{bmatrix}$
$f(u) =alpha f(begin{bmatrix}3&1&-1end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=alpha f(2begin{bmatrix}1&1&1end{bmatrix}^T-begin{bmatrix}-1&1&3end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=(beta-alpha)f(begin{bmatrix}-1&1&3end{bmatrix}^T)$
Since $begin{bmatrix}-1&1&3end{bmatrix}^Tnotinker(f),f(begin{bmatrix}-1&1&3end{bmatrix}^T)ne0$. Thus, $dim f(U)=1$.
$endgroup$
add a comment |
$begingroup$
While $(3, 1, -1)$ and $(-1, 1, 3)$ are linearly independent, there is no guarantee that $f(3, 1, -1)$ and $f(-1, 1, 3)$ (which span $f(U)$) are linearly independent. What if $f$ maps one (or both!) to $0$?
Think about it this way: consider the restriction $f|_U$ of the linear map $f$ to the set $U$. This is now a linear map from $U$ to $mathbb{R}^3$. What would the kernel be for this linear transformation? It should be the kernel of $f$ intersected with $U$. What is that intersection? Is it trivial? Is it not trivial?
Note that the range of $f|_U$ is simply $f(U)$. Using the rank-nullity theorem on $f|_U$ (remembering it's now defined on a $2$-dimensional space $U$), you can compute the dimension of this space using the dimension of the kernel.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062621%2fif-f-is-linear-transformation-is-proof-that-fu-is-linear-subspace-and-fin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$f(begin{bmatrix}3&1&-1end{bmatrix}^T),f(begin{bmatrix}-1&1&3end{bmatrix}^T)$ might not be linearly independent.
Notice that $begin{bmatrix}3\1\-1end{bmatrix}=2begin{bmatrix}1\1\1end{bmatrix}-begin{bmatrix}-1\1\3end{bmatrix}$
$f(u) =alpha f(begin{bmatrix}3&1&-1end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=alpha f(2begin{bmatrix}1&1&1end{bmatrix}^T-begin{bmatrix}-1&1&3end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=(beta-alpha)f(begin{bmatrix}-1&1&3end{bmatrix}^T)$
Since $begin{bmatrix}-1&1&3end{bmatrix}^Tnotinker(f),f(begin{bmatrix}-1&1&3end{bmatrix}^T)ne0$. Thus, $dim f(U)=1$.
$endgroup$
add a comment |
$begingroup$
$f(begin{bmatrix}3&1&-1end{bmatrix}^T),f(begin{bmatrix}-1&1&3end{bmatrix}^T)$ might not be linearly independent.
Notice that $begin{bmatrix}3\1\-1end{bmatrix}=2begin{bmatrix}1\1\1end{bmatrix}-begin{bmatrix}-1\1\3end{bmatrix}$
$f(u) =alpha f(begin{bmatrix}3&1&-1end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=alpha f(2begin{bmatrix}1&1&1end{bmatrix}^T-begin{bmatrix}-1&1&3end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=(beta-alpha)f(begin{bmatrix}-1&1&3end{bmatrix}^T)$
Since $begin{bmatrix}-1&1&3end{bmatrix}^Tnotinker(f),f(begin{bmatrix}-1&1&3end{bmatrix}^T)ne0$. Thus, $dim f(U)=1$.
$endgroup$
add a comment |
$begingroup$
$f(begin{bmatrix}3&1&-1end{bmatrix}^T),f(begin{bmatrix}-1&1&3end{bmatrix}^T)$ might not be linearly independent.
Notice that $begin{bmatrix}3\1\-1end{bmatrix}=2begin{bmatrix}1\1\1end{bmatrix}-begin{bmatrix}-1\1\3end{bmatrix}$
$f(u) =alpha f(begin{bmatrix}3&1&-1end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=alpha f(2begin{bmatrix}1&1&1end{bmatrix}^T-begin{bmatrix}-1&1&3end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=(beta-alpha)f(begin{bmatrix}-1&1&3end{bmatrix}^T)$
Since $begin{bmatrix}-1&1&3end{bmatrix}^Tnotinker(f),f(begin{bmatrix}-1&1&3end{bmatrix}^T)ne0$. Thus, $dim f(U)=1$.
$endgroup$
$f(begin{bmatrix}3&1&-1end{bmatrix}^T),f(begin{bmatrix}-1&1&3end{bmatrix}^T)$ might not be linearly independent.
Notice that $begin{bmatrix}3\1\-1end{bmatrix}=2begin{bmatrix}1\1\1end{bmatrix}-begin{bmatrix}-1\1\3end{bmatrix}$
$f(u) =alpha f(begin{bmatrix}3&1&-1end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=alpha f(2begin{bmatrix}1&1&1end{bmatrix}^T-begin{bmatrix}-1&1&3end{bmatrix}^T)+beta f(begin{bmatrix}-1&1&3end{bmatrix}^T)\=(beta-alpha)f(begin{bmatrix}-1&1&3end{bmatrix}^T)$
Since $begin{bmatrix}-1&1&3end{bmatrix}^Tnotinker(f),f(begin{bmatrix}-1&1&3end{bmatrix}^T)ne0$. Thus, $dim f(U)=1$.
answered Jan 5 at 11:52
Shubham JohriShubham Johri
5,550818
5,550818
add a comment |
add a comment |
$begingroup$
While $(3, 1, -1)$ and $(-1, 1, 3)$ are linearly independent, there is no guarantee that $f(3, 1, -1)$ and $f(-1, 1, 3)$ (which span $f(U)$) are linearly independent. What if $f$ maps one (or both!) to $0$?
Think about it this way: consider the restriction $f|_U$ of the linear map $f$ to the set $U$. This is now a linear map from $U$ to $mathbb{R}^3$. What would the kernel be for this linear transformation? It should be the kernel of $f$ intersected with $U$. What is that intersection? Is it trivial? Is it not trivial?
Note that the range of $f|_U$ is simply $f(U)$. Using the rank-nullity theorem on $f|_U$ (remembering it's now defined on a $2$-dimensional space $U$), you can compute the dimension of this space using the dimension of the kernel.
$endgroup$
add a comment |
$begingroup$
While $(3, 1, -1)$ and $(-1, 1, 3)$ are linearly independent, there is no guarantee that $f(3, 1, -1)$ and $f(-1, 1, 3)$ (which span $f(U)$) are linearly independent. What if $f$ maps one (or both!) to $0$?
Think about it this way: consider the restriction $f|_U$ of the linear map $f$ to the set $U$. This is now a linear map from $U$ to $mathbb{R}^3$. What would the kernel be for this linear transformation? It should be the kernel of $f$ intersected with $U$. What is that intersection? Is it trivial? Is it not trivial?
Note that the range of $f|_U$ is simply $f(U)$. Using the rank-nullity theorem on $f|_U$ (remembering it's now defined on a $2$-dimensional space $U$), you can compute the dimension of this space using the dimension of the kernel.
$endgroup$
add a comment |
$begingroup$
While $(3, 1, -1)$ and $(-1, 1, 3)$ are linearly independent, there is no guarantee that $f(3, 1, -1)$ and $f(-1, 1, 3)$ (which span $f(U)$) are linearly independent. What if $f$ maps one (or both!) to $0$?
Think about it this way: consider the restriction $f|_U$ of the linear map $f$ to the set $U$. This is now a linear map from $U$ to $mathbb{R}^3$. What would the kernel be for this linear transformation? It should be the kernel of $f$ intersected with $U$. What is that intersection? Is it trivial? Is it not trivial?
Note that the range of $f|_U$ is simply $f(U)$. Using the rank-nullity theorem on $f|_U$ (remembering it's now defined on a $2$-dimensional space $U$), you can compute the dimension of this space using the dimension of the kernel.
$endgroup$
While $(3, 1, -1)$ and $(-1, 1, 3)$ are linearly independent, there is no guarantee that $f(3, 1, -1)$ and $f(-1, 1, 3)$ (which span $f(U)$) are linearly independent. What if $f$ maps one (or both!) to $0$?
Think about it this way: consider the restriction $f|_U$ of the linear map $f$ to the set $U$. This is now a linear map from $U$ to $mathbb{R}^3$. What would the kernel be for this linear transformation? It should be the kernel of $f$ intersected with $U$. What is that intersection? Is it trivial? Is it not trivial?
Note that the range of $f|_U$ is simply $f(U)$. Using the rank-nullity theorem on $f|_U$ (remembering it's now defined on a $2$-dimensional space $U$), you can compute the dimension of this space using the dimension of the kernel.
answered Jan 5 at 11:28
Theo BenditTheo Bendit
20.5k12354
20.5k12354
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062621%2fif-f-is-linear-transformation-is-proof-that-fu-is-linear-subspace-and-fin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown