limit of ratio of partition function
$begingroup$
Does the following limit exists?
$$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$
where $p(n)$ denote the partition function.
If this limit exists, is it equal to 1?
Kindly share your thoughts.
Thank you.
integer-partitions
$endgroup$
add a comment |
$begingroup$
Does the following limit exists?
$$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$
where $p(n)$ denote the partition function.
If this limit exists, is it equal to 1?
Kindly share your thoughts.
Thank you.
integer-partitions
$endgroup$
add a comment |
$begingroup$
Does the following limit exists?
$$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$
where $p(n)$ denote the partition function.
If this limit exists, is it equal to 1?
Kindly share your thoughts.
Thank you.
integer-partitions
$endgroup$
Does the following limit exists?
$$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$
where $p(n)$ denote the partition function.
If this limit exists, is it equal to 1?
Kindly share your thoughts.
Thank you.
integer-partitions
integer-partitions
asked Jan 3 at 6:40
GA316GA316
2,7041232
2,7041232
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
$$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
n}+Oleft(frac{1}{n^{3/2}}right)$$ and continuing with Taylor series using $x=e^{log(x)}$, then
$$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
n}+Oleft(frac{1}{n^{3/2}}right)$$ which shows the limit (already given in answers) but also a quite good approximation of the ratio.
Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$
$endgroup$
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
add a comment |
$begingroup$
$p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.
Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060310%2flimit-of-ratio-of-partition-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
$$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
n}+Oleft(frac{1}{n^{3/2}}right)$$ and continuing with Taylor series using $x=e^{log(x)}$, then
$$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
n}+Oleft(frac{1}{n^{3/2}}right)$$ which shows the limit (already given in answers) but also a quite good approximation of the ratio.
Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$
$endgroup$
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
add a comment |
$begingroup$
Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
$$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
n}+Oleft(frac{1}{n^{3/2}}right)$$ and continuing with Taylor series using $x=e^{log(x)}$, then
$$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
n}+Oleft(frac{1}{n^{3/2}}right)$$ which shows the limit (already given in answers) but also a quite good approximation of the ratio.
Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$
$endgroup$
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
add a comment |
$begingroup$
Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
$$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
n}+Oleft(frac{1}{n^{3/2}}right)$$ and continuing with Taylor series using $x=e^{log(x)}$, then
$$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
n}+Oleft(frac{1}{n^{3/2}}right)$$ which shows the limit (already given in answers) but also a quite good approximation of the ratio.
Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$
$endgroup$
Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
$$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
n}+Oleft(frac{1}{n^{3/2}}right)$$ and continuing with Taylor series using $x=e^{log(x)}$, then
$$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
n}+Oleft(frac{1}{n^{3/2}}right)$$ which shows the limit (already given in answers) but also a quite good approximation of the ratio.
Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$
answered Jan 3 at 8:01
Claude LeiboviciClaude Leibovici
125k1158136
125k1158136
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
add a comment |
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
$begingroup$
Thank you. Very insightful.
$endgroup$
– GA316
Jan 3 at 8:30
add a comment |
$begingroup$
$p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.
Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$
$endgroup$
add a comment |
$begingroup$
$p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.
Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$
$endgroup$
add a comment |
$begingroup$
$p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.
Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$
$endgroup$
$p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.
Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$
answered Jan 3 at 7:18
Kemono ChenKemono Chen
3,1941844
3,1941844
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060310%2flimit-of-ratio-of-partition-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown