limit of ratio of partition function












0












$begingroup$


Does the following limit exists?



$$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$



where $p(n)$ denote the partition function.



If this limit exists, is it equal to 1?



Kindly share your thoughts.



Thank you.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Does the following limit exists?



    $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$



    where $p(n)$ denote the partition function.



    If this limit exists, is it equal to 1?



    Kindly share your thoughts.



    Thank you.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Does the following limit exists?



      $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$



      where $p(n)$ denote the partition function.



      If this limit exists, is it equal to 1?



      Kindly share your thoughts.



      Thank you.










      share|cite|improve this question









      $endgroup$




      Does the following limit exists?



      $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}$$



      where $p(n)$ denote the partition function.



      If this limit exists, is it equal to 1?



      Kindly share your thoughts.



      Thank you.







      integer-partitions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 3 at 6:40









      GA316GA316

      2,7041232




      2,7041232






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
          $$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
          n}+Oleft(frac{1}{n^{3/2}}right)$$
          and continuing with Taylor series using $x=e^{log(x)}$, then
          $$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
          n}+Oleft(frac{1}{n^{3/2}}right)$$
          which shows the limit (already given in answers) but also a quite good approximation of the ratio.



          Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you. Very insightful.
            $endgroup$
            – GA316
            Jan 3 at 8:30



















          1












          $begingroup$

          $p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.

          Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060310%2flimit-of-ratio-of-partition-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
            $$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            and continuing with Taylor series using $x=e^{log(x)}$, then
            $$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            which shows the limit (already given in answers) but also a quite good approximation of the ratio.



            Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you. Very insightful.
              $endgroup$
              – GA316
              Jan 3 at 8:30
















            1












            $begingroup$

            Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
            $$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            and continuing with Taylor series using $x=e^{log(x)}$, then
            $$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            which shows the limit (already given in answers) but also a quite good approximation of the ratio.



            Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you. Very insightful.
              $endgroup$
              – GA316
              Jan 3 at 8:30














            1












            1








            1





            $begingroup$

            Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
            $$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            and continuing with Taylor series using $x=e^{log(x)}$, then
            $$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            which shows the limit (already given in answers) but also a quite good approximation of the ratio.



            Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$






            share|cite|improve this answer









            $endgroup$



            Using $$p(n) sim frac{e^{pisqrt{frac{2n}3}}}{4sqrt3,n} $$ compute $frac{p(n)}{p(n-a)}$, take logarithms and expand as series for large values og $n$. This would give
            $$log left(frac{p(n)}{p(n-a)}right)=frac{pi a}{sqrt{6n}}-frac{a}{2
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            and continuing with Taylor series using $x=e^{log(x)}$, then
            $$frac{p(n)}{p(n-a)}=1+frac{pi a }{sqrt{6n}}+frac{a left(pi ^2 a-6right)}{12
            n}+Oleft(frac{1}{n^{3/2}}right)$$
            which shows the limit (already given in answers) but also a quite good approximation of the ratio.



            Using $n=50$ and $a=5$, the exact value is $frac{102113}{44567}approx 2.291$ while the above expansion would give $frac{114+20 sqrt{3} pi +5 pi ^2}{120} approx 2.268$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 3 at 8:01









            Claude LeiboviciClaude Leibovici

            125k1158136




            125k1158136












            • $begingroup$
              Thank you. Very insightful.
              $endgroup$
              – GA316
              Jan 3 at 8:30


















            • $begingroup$
              Thank you. Very insightful.
              $endgroup$
              – GA316
              Jan 3 at 8:30
















            $begingroup$
            Thank you. Very insightful.
            $endgroup$
            – GA316
            Jan 3 at 8:30




            $begingroup$
            Thank you. Very insightful.
            $endgroup$
            – GA316
            Jan 3 at 8:30











            1












            $begingroup$

            $p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.

            Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              $p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.

              Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                $p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.

                Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$






                share|cite|improve this answer









                $endgroup$



                $p(n) sim frac1{4sqrt3n} e^{pisqrt{2n/3}}$ according to OEIS and GTM177 Chapter II.

                Hence, $$lim_{n rightarrow infty} frac{p(n)}{p(n-5)}=lim_{n rightarrow infty} frac{frac1{4sqrt3n} e^{pisqrt{2n/3}}}{frac1{4sqrt3(n-5)} e^{pisqrt{2(n-5)/3}}}=1$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 3 at 7:18









                Kemono ChenKemono Chen

                3,1941844




                3,1941844






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060310%2flimit-of-ratio-of-partition-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen