All quasi-isometry is coarsely surjective.
$begingroup$
Definition. $(X,d_X)$, $(Y,d_Y)$ metric spaces.
$f:Xto Y$ is quasi-isometry if
$d_Y(f(x),f(x'))leq Ld_X(x,x')+C$
exists coarse inverse, i.e. $overline{f}:Yto X$ such that
$d_X(overline{f}f(x),x)leq C$
$d_Y(foverline{f}(y),y)leq C$
and $d_X(overline{f}(y),overline{f}(y'))leq Ld_Y(y,y')+C$
for all $x,x'in X$, for all $y,y'in Y$
How prove that $f:Xto Y$ ($L-C$) quasi-isometry then $f$ is coarsely surjective? i.e. $forall yin Y, exists f(x)in f(X)$ such that $d_Y(y,f(x))leq C$
metric-spaces lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Definition. $(X,d_X)$, $(Y,d_Y)$ metric spaces.
$f:Xto Y$ is quasi-isometry if
$d_Y(f(x),f(x'))leq Ld_X(x,x')+C$
exists coarse inverse, i.e. $overline{f}:Yto X$ such that
$d_X(overline{f}f(x),x)leq C$
$d_Y(foverline{f}(y),y)leq C$
and $d_X(overline{f}(y),overline{f}(y'))leq Ld_Y(y,y')+C$
for all $x,x'in X$, for all $y,y'in Y$
How prove that $f:Xto Y$ ($L-C$) quasi-isometry then $f$ is coarsely surjective? i.e. $forall yin Y, exists f(x)in f(X)$ such that $d_Y(y,f(x))leq C$
metric-spaces lipschitz-functions
$endgroup$
add a comment |
$begingroup$
Definition. $(X,d_X)$, $(Y,d_Y)$ metric spaces.
$f:Xto Y$ is quasi-isometry if
$d_Y(f(x),f(x'))leq Ld_X(x,x')+C$
exists coarse inverse, i.e. $overline{f}:Yto X$ such that
$d_X(overline{f}f(x),x)leq C$
$d_Y(foverline{f}(y),y)leq C$
and $d_X(overline{f}(y),overline{f}(y'))leq Ld_Y(y,y')+C$
for all $x,x'in X$, for all $y,y'in Y$
How prove that $f:Xto Y$ ($L-C$) quasi-isometry then $f$ is coarsely surjective? i.e. $forall yin Y, exists f(x)in f(X)$ such that $d_Y(y,f(x))leq C$
metric-spaces lipschitz-functions
$endgroup$
Definition. $(X,d_X)$, $(Y,d_Y)$ metric spaces.
$f:Xto Y$ is quasi-isometry if
$d_Y(f(x),f(x'))leq Ld_X(x,x')+C$
exists coarse inverse, i.e. $overline{f}:Yto X$ such that
$d_X(overline{f}f(x),x)leq C$
$d_Y(foverline{f}(y),y)leq C$
and $d_X(overline{f}(y),overline{f}(y'))leq Ld_Y(y,y')+C$
for all $x,x'in X$, for all $y,y'in Y$
How prove that $f:Xto Y$ ($L-C$) quasi-isometry then $f$ is coarsely surjective? i.e. $forall yin Y, exists f(x)in f(X)$ such that $d_Y(y,f(x))leq C$
metric-spaces lipschitz-functions
metric-spaces lipschitz-functions
edited Nov 7 '18 at 15:58
eraldcoil
asked Nov 7 '18 at 15:53
eraldcoileraldcoil
388211
388211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Put $x=bar f(y)$.
..........
Given $yin Y$ we need to find $x$ satisfying given property. But the definition of a quasi-isometry trivially implies that $x=bar f(y)$ fits.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2988703%2fall-quasi-isometry-is-coarsely-surjective%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Put $x=bar f(y)$.
..........
Given $yin Y$ we need to find $x$ satisfying given property. But the definition of a quasi-isometry trivially implies that $x=bar f(y)$ fits.
$endgroup$
add a comment |
$begingroup$
Put $x=bar f(y)$.
..........
Given $yin Y$ we need to find $x$ satisfying given property. But the definition of a quasi-isometry trivially implies that $x=bar f(y)$ fits.
$endgroup$
add a comment |
$begingroup$
Put $x=bar f(y)$.
..........
Given $yin Y$ we need to find $x$ satisfying given property. But the definition of a quasi-isometry trivially implies that $x=bar f(y)$ fits.
$endgroup$
Put $x=bar f(y)$.
..........
Given $yin Y$ we need to find $x$ satisfying given property. But the definition of a quasi-isometry trivially implies that $x=bar f(y)$ fits.
edited Jan 3 at 17:49
answered Dec 5 '18 at 8:11
Alex RavskyAlex Ravsky
39.6k32181
39.6k32181
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2988703%2fall-quasi-isometry-is-coarsely-surjective%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown