$x_i frac{partial f(x)}{partial x_i} = f(x)g_i(x)$ for all $i$
$begingroup$
What can we say about the function $f:mathbb{R}^k rightarrow mathbb{R}$ if for all $i=1,...,k$ and all $x in mathbb{R}^k$ we have
$x_ifrac{partial f(x)}{partial x_i} = f(x)g_i(x)$
Is there actually any restriction we can make other than that $f$ is differentiable?
ordinary-differential-equations functional-equations
$endgroup$
add a comment |
$begingroup$
What can we say about the function $f:mathbb{R}^k rightarrow mathbb{R}$ if for all $i=1,...,k$ and all $x in mathbb{R}^k$ we have
$x_ifrac{partial f(x)}{partial x_i} = f(x)g_i(x)$
Is there actually any restriction we can make other than that $f$ is differentiable?
ordinary-differential-equations functional-equations
$endgroup$
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31
add a comment |
$begingroup$
What can we say about the function $f:mathbb{R}^k rightarrow mathbb{R}$ if for all $i=1,...,k$ and all $x in mathbb{R}^k$ we have
$x_ifrac{partial f(x)}{partial x_i} = f(x)g_i(x)$
Is there actually any restriction we can make other than that $f$ is differentiable?
ordinary-differential-equations functional-equations
$endgroup$
What can we say about the function $f:mathbb{R}^k rightarrow mathbb{R}$ if for all $i=1,...,k$ and all $x in mathbb{R}^k$ we have
$x_ifrac{partial f(x)}{partial x_i} = f(x)g_i(x)$
Is there actually any restriction we can make other than that $f$ is differentiable?
ordinary-differential-equations functional-equations
ordinary-differential-equations functional-equations
edited Dec 5 '18 at 7:36
Martin Rosenau
1,156139
1,156139
asked Dec 5 '18 at 7:21
HRSEHRSE
233110
233110
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31
add a comment |
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Consider $phi=ln|f|$, then $$frac{∂phi(x)}{∂x_i}=frac{g_i(x)}{x_i}.$$ By the Schwarz lemma, the mixed second derivatives do not depend on the order of derivation, thus
$$
frac1{x_i}frac{∂g_i(x)}{∂x_j}=frac1{x_j}frac{∂g_j(x)}{∂x_i}
$$
is a necessary condition for $f$ to exist.
$endgroup$
add a comment |
$begingroup$
If $g_i(x)=-1$ then you have that
$frac{partial}{partial x_i}(x_i f(x))=0$
So a solution is
$f(x)=frac{1}{prod_{k=1}^n x_k}$
$endgroup$
add a comment |
$begingroup$
We can say nearly nothing. Let $f(x)$ never equals to zero. Then we can take $g_i(x)=frac{x_ifrac{partial f(x)}{partial x_i}}{f(x)}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026760%2fx-i-frac-partial-fx-partial-x-i-fxg-ix-for-all-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider $phi=ln|f|$, then $$frac{∂phi(x)}{∂x_i}=frac{g_i(x)}{x_i}.$$ By the Schwarz lemma, the mixed second derivatives do not depend on the order of derivation, thus
$$
frac1{x_i}frac{∂g_i(x)}{∂x_j}=frac1{x_j}frac{∂g_j(x)}{∂x_i}
$$
is a necessary condition for $f$ to exist.
$endgroup$
add a comment |
$begingroup$
Consider $phi=ln|f|$, then $$frac{∂phi(x)}{∂x_i}=frac{g_i(x)}{x_i}.$$ By the Schwarz lemma, the mixed second derivatives do not depend on the order of derivation, thus
$$
frac1{x_i}frac{∂g_i(x)}{∂x_j}=frac1{x_j}frac{∂g_j(x)}{∂x_i}
$$
is a necessary condition for $f$ to exist.
$endgroup$
add a comment |
$begingroup$
Consider $phi=ln|f|$, then $$frac{∂phi(x)}{∂x_i}=frac{g_i(x)}{x_i}.$$ By the Schwarz lemma, the mixed second derivatives do not depend on the order of derivation, thus
$$
frac1{x_i}frac{∂g_i(x)}{∂x_j}=frac1{x_j}frac{∂g_j(x)}{∂x_i}
$$
is a necessary condition for $f$ to exist.
$endgroup$
Consider $phi=ln|f|$, then $$frac{∂phi(x)}{∂x_i}=frac{g_i(x)}{x_i}.$$ By the Schwarz lemma, the mixed second derivatives do not depend on the order of derivation, thus
$$
frac1{x_i}frac{∂g_i(x)}{∂x_j}=frac1{x_j}frac{∂g_j(x)}{∂x_i}
$$
is a necessary condition for $f$ to exist.
answered Dec 5 '18 at 10:20
LutzLLutzL
56.9k42055
56.9k42055
add a comment |
add a comment |
$begingroup$
If $g_i(x)=-1$ then you have that
$frac{partial}{partial x_i}(x_i f(x))=0$
So a solution is
$f(x)=frac{1}{prod_{k=1}^n x_k}$
$endgroup$
add a comment |
$begingroup$
If $g_i(x)=-1$ then you have that
$frac{partial}{partial x_i}(x_i f(x))=0$
So a solution is
$f(x)=frac{1}{prod_{k=1}^n x_k}$
$endgroup$
add a comment |
$begingroup$
If $g_i(x)=-1$ then you have that
$frac{partial}{partial x_i}(x_i f(x))=0$
So a solution is
$f(x)=frac{1}{prod_{k=1}^n x_k}$
$endgroup$
If $g_i(x)=-1$ then you have that
$frac{partial}{partial x_i}(x_i f(x))=0$
So a solution is
$f(x)=frac{1}{prod_{k=1}^n x_k}$
edited Dec 5 '18 at 7:59
answered Dec 5 '18 at 7:52
Federico FalluccaFederico Fallucca
1,85018
1,85018
add a comment |
add a comment |
$begingroup$
We can say nearly nothing. Let $f(x)$ never equals to zero. Then we can take $g_i(x)=frac{x_ifrac{partial f(x)}{partial x_i}}{f(x)}$
$endgroup$
add a comment |
$begingroup$
We can say nearly nothing. Let $f(x)$ never equals to zero. Then we can take $g_i(x)=frac{x_ifrac{partial f(x)}{partial x_i}}{f(x)}$
$endgroup$
add a comment |
$begingroup$
We can say nearly nothing. Let $f(x)$ never equals to zero. Then we can take $g_i(x)=frac{x_ifrac{partial f(x)}{partial x_i}}{f(x)}$
$endgroup$
We can say nearly nothing. Let $f(x)$ never equals to zero. Then we can take $g_i(x)=frac{x_ifrac{partial f(x)}{partial x_i}}{f(x)}$
answered Dec 5 '18 at 9:10
MinzMinz
951127
951127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026760%2fx-i-frac-partial-fx-partial-x-i-fxg-ix-for-all-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$f(x)=0$ implies $x_ifrac {partial f (x)} {partial x_i}=0$.
$endgroup$
– Kavi Rama Murthy
Dec 5 '18 at 7:31