apply a function to a dynamically changed number of columns for each row
I have a list:
pr <- list(x = c("a", "b", "c"),
y = c("a", "b"),
z = c("a"))
and a data frame df
:
> dput(df)
structure(list(m = c("x", "y", "x", "y", "x", "x", "z", "y",
"z"), order = c(2, 3, 0, 0, 0, 0, 2, 0, 0), a = c(0, 0, -1, -1,
0, 0, 0, -1, -1), b = c(0, 0, 0, 0, -1, 0, 0, 0, 0), c = c(0,
0, 0, 0, 0, -1, 0, 0, 0)), .Names = c("m", "order", "a", "b",
"c"), row.names = c(NA, -9L), class = c("tbl_df", "tbl", "data.frame"
))
which looks as following
> dff
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 0 0 0
2 y 3.00 0 0 0
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 0 0 0
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
Now, if the value in order
is larger than zero, check the corresponding value in m
and add the order
-value only to those columns which names correspond to the value of m
in the list pr
.
So, the desired output should look like
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 2.00 2.00 2.00 (since x = c("a", "b", "c")
2 y 3.00 3.00 3.00 0 (since y = c("a", "b")
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 2.00 0 0 (since z = c("a")
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
I've tried to attack this using mutate_at
, quosures, !!
but now I'm stuck.
Any help would be very much appreciated. Thank you in advance!
r dplyr
add a comment |
I have a list:
pr <- list(x = c("a", "b", "c"),
y = c("a", "b"),
z = c("a"))
and a data frame df
:
> dput(df)
structure(list(m = c("x", "y", "x", "y", "x", "x", "z", "y",
"z"), order = c(2, 3, 0, 0, 0, 0, 2, 0, 0), a = c(0, 0, -1, -1,
0, 0, 0, -1, -1), b = c(0, 0, 0, 0, -1, 0, 0, 0, 0), c = c(0,
0, 0, 0, 0, -1, 0, 0, 0)), .Names = c("m", "order", "a", "b",
"c"), row.names = c(NA, -9L), class = c("tbl_df", "tbl", "data.frame"
))
which looks as following
> dff
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 0 0 0
2 y 3.00 0 0 0
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 0 0 0
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
Now, if the value in order
is larger than zero, check the corresponding value in m
and add the order
-value only to those columns which names correspond to the value of m
in the list pr
.
So, the desired output should look like
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 2.00 2.00 2.00 (since x = c("a", "b", "c")
2 y 3.00 3.00 3.00 0 (since y = c("a", "b")
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 2.00 0 0 (since z = c("a")
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
I've tried to attack this using mutate_at
, quosures, !!
but now I'm stuck.
Any help would be very much appreciated. Thank you in advance!
r dplyr
add a comment |
I have a list:
pr <- list(x = c("a", "b", "c"),
y = c("a", "b"),
z = c("a"))
and a data frame df
:
> dput(df)
structure(list(m = c("x", "y", "x", "y", "x", "x", "z", "y",
"z"), order = c(2, 3, 0, 0, 0, 0, 2, 0, 0), a = c(0, 0, -1, -1,
0, 0, 0, -1, -1), b = c(0, 0, 0, 0, -1, 0, 0, 0, 0), c = c(0,
0, 0, 0, 0, -1, 0, 0, 0)), .Names = c("m", "order", "a", "b",
"c"), row.names = c(NA, -9L), class = c("tbl_df", "tbl", "data.frame"
))
which looks as following
> dff
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 0 0 0
2 y 3.00 0 0 0
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 0 0 0
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
Now, if the value in order
is larger than zero, check the corresponding value in m
and add the order
-value only to those columns which names correspond to the value of m
in the list pr
.
So, the desired output should look like
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 2.00 2.00 2.00 (since x = c("a", "b", "c")
2 y 3.00 3.00 3.00 0 (since y = c("a", "b")
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 2.00 0 0 (since z = c("a")
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
I've tried to attack this using mutate_at
, quosures, !!
but now I'm stuck.
Any help would be very much appreciated. Thank you in advance!
r dplyr
I have a list:
pr <- list(x = c("a", "b", "c"),
y = c("a", "b"),
z = c("a"))
and a data frame df
:
> dput(df)
structure(list(m = c("x", "y", "x", "y", "x", "x", "z", "y",
"z"), order = c(2, 3, 0, 0, 0, 0, 2, 0, 0), a = c(0, 0, -1, -1,
0, 0, 0, -1, -1), b = c(0, 0, 0, 0, -1, 0, 0, 0, 0), c = c(0,
0, 0, 0, 0, -1, 0, 0, 0)), .Names = c("m", "order", "a", "b",
"c"), row.names = c(NA, -9L), class = c("tbl_df", "tbl", "data.frame"
))
which looks as following
> dff
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 0 0 0
2 y 3.00 0 0 0
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 0 0 0
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
Now, if the value in order
is larger than zero, check the corresponding value in m
and add the order
-value only to those columns which names correspond to the value of m
in the list pr
.
So, the desired output should look like
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2.00 2.00 2.00 2.00 (since x = c("a", "b", "c")
2 y 3.00 3.00 3.00 0 (since y = c("a", "b")
3 x 0 -1.00 0 0
4 y 0 -1.00 0 0
5 x 0 0 -1.00 0
6 x 0 0 0 -1.00
7 z 2.00 2.00 0 0 (since z = c("a")
8 y 0 -1.00 0 0
9 z 0 -1.00 0 0
I've tried to attack this using mutate_at
, quosures, !!
but now I'm stuck.
Any help would be very much appreciated. Thank you in advance!
r dplyr
r dplyr
edited Nov 21 '18 at 15:02
iod
3,5692722
3,5692722
asked Nov 21 '18 at 14:53
user7647857user7647857
403
403
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
The problem doesn't seem to be straightforward, so my solution is not particularly elegant:
df %>% mutate(row = row_number()) %>%
gather(key, value, -m, -order, -row) %>%
mutate(value = value + order * (order > 0 & mapply(`%in%`, key, pr[m]))) %>%
spread(key, value) %>% select(-row)
First I define row
as an auxiliary variable for using spread
later. Now that all the values of a
, b
, c
are in a single column, simply mutate
can be used. Then we go back.
Simply using a loop I guess is more concise than most if not all solutions in this case:
for(r in which(df$order > 0))
df[r, pr[[df$m[r]]]] <- df[r, pr[[df$m[r]]]] + df$order[r]
Note that neither of the solutions mentions a
, b
, c
so that a large number of columns is not an issue.
Although the later variant (withfor
loop) is notdplyr
-style, i find it more succinct. Thank you.
– user7647857
Nov 22 '18 at 11:28
add a comment |
What about:
library(tidyverse)
dynamic_function <- function(df, list_var, m_var, order_var, ...) {
group_var <- quos(...)
order_var <- enquo(order_var)
byvar1 <- enquo(m_var)
byvar2 <- "key"
by <- setNames(quo_name(byvar2), quo_name(byvar1))
list_var <- data.frame(sapply(list_var, '[', seq(max(lengths(list_var))))) %>%
gather() %>% na.omit()
df_gathered <- df %>%
mutate(rown = row_number()) %>%
gather(key, value, !!! group_var) %>%
left_join(list_var, by = by) %>%
filter(key == value.y) %>%
group_by(!! byvar1, !! order_var) %>%
mutate(
value = case_when(
!! order_var > 0 ~ !! order_var,
TRUE ~ value.x
)
) %>% ungroup() %>% distinct(!! byvar1, !! order_var, key, value, rown) %>%
spread(key, value) %>%
group_by(!! byvar1, !! order_var, rown) %>%
replace(., is.na(.), 0) %>%
summarise_at(vars(!!! group_var), funs(sum)) %>%
arrange(rown) %>% select(-rown) %>% ungroup()
return(df_gathered)
}
You can call this function like:
dfs <- dynamic_function(df, list_var = pr, m_var = m, order_var = order, a, b, c)
Where df
is you dataframe name, list_var
is your list name, m_var
is the name of m column, order_var
is the name of order column, and a, b, c
are dynamic columns you want (you can add d, e, f
...).
Output:
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2 2 2 2
2 y 3 3 3 0
3 x 0 -1 0 0
4 y 0 -1 0 0
5 x 0 0 -1 0
6 x 0 0 0 -1
7 z 2 2 0 0
8 y 0 -1 0 0
9 z 0 -1 0 0
You will get a warning about attributes which you can ignore.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53414722%2fapply-a-function-to-a-dynamically-changed-number-of-columns-for-each-row%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The problem doesn't seem to be straightforward, so my solution is not particularly elegant:
df %>% mutate(row = row_number()) %>%
gather(key, value, -m, -order, -row) %>%
mutate(value = value + order * (order > 0 & mapply(`%in%`, key, pr[m]))) %>%
spread(key, value) %>% select(-row)
First I define row
as an auxiliary variable for using spread
later. Now that all the values of a
, b
, c
are in a single column, simply mutate
can be used. Then we go back.
Simply using a loop I guess is more concise than most if not all solutions in this case:
for(r in which(df$order > 0))
df[r, pr[[df$m[r]]]] <- df[r, pr[[df$m[r]]]] + df$order[r]
Note that neither of the solutions mentions a
, b
, c
so that a large number of columns is not an issue.
Although the later variant (withfor
loop) is notdplyr
-style, i find it more succinct. Thank you.
– user7647857
Nov 22 '18 at 11:28
add a comment |
The problem doesn't seem to be straightforward, so my solution is not particularly elegant:
df %>% mutate(row = row_number()) %>%
gather(key, value, -m, -order, -row) %>%
mutate(value = value + order * (order > 0 & mapply(`%in%`, key, pr[m]))) %>%
spread(key, value) %>% select(-row)
First I define row
as an auxiliary variable for using spread
later. Now that all the values of a
, b
, c
are in a single column, simply mutate
can be used. Then we go back.
Simply using a loop I guess is more concise than most if not all solutions in this case:
for(r in which(df$order > 0))
df[r, pr[[df$m[r]]]] <- df[r, pr[[df$m[r]]]] + df$order[r]
Note that neither of the solutions mentions a
, b
, c
so that a large number of columns is not an issue.
Although the later variant (withfor
loop) is notdplyr
-style, i find it more succinct. Thank you.
– user7647857
Nov 22 '18 at 11:28
add a comment |
The problem doesn't seem to be straightforward, so my solution is not particularly elegant:
df %>% mutate(row = row_number()) %>%
gather(key, value, -m, -order, -row) %>%
mutate(value = value + order * (order > 0 & mapply(`%in%`, key, pr[m]))) %>%
spread(key, value) %>% select(-row)
First I define row
as an auxiliary variable for using spread
later. Now that all the values of a
, b
, c
are in a single column, simply mutate
can be used. Then we go back.
Simply using a loop I guess is more concise than most if not all solutions in this case:
for(r in which(df$order > 0))
df[r, pr[[df$m[r]]]] <- df[r, pr[[df$m[r]]]] + df$order[r]
Note that neither of the solutions mentions a
, b
, c
so that a large number of columns is not an issue.
The problem doesn't seem to be straightforward, so my solution is not particularly elegant:
df %>% mutate(row = row_number()) %>%
gather(key, value, -m, -order, -row) %>%
mutate(value = value + order * (order > 0 & mapply(`%in%`, key, pr[m]))) %>%
spread(key, value) %>% select(-row)
First I define row
as an auxiliary variable for using spread
later. Now that all the values of a
, b
, c
are in a single column, simply mutate
can be used. Then we go back.
Simply using a loop I guess is more concise than most if not all solutions in this case:
for(r in which(df$order > 0))
df[r, pr[[df$m[r]]]] <- df[r, pr[[df$m[r]]]] + df$order[r]
Note that neither of the solutions mentions a
, b
, c
so that a large number of columns is not an issue.
answered Nov 21 '18 at 16:11
Julius VainoraJulius Vainora
33.3k75979
33.3k75979
Although the later variant (withfor
loop) is notdplyr
-style, i find it more succinct. Thank you.
– user7647857
Nov 22 '18 at 11:28
add a comment |
Although the later variant (withfor
loop) is notdplyr
-style, i find it more succinct. Thank you.
– user7647857
Nov 22 '18 at 11:28
Although the later variant (with
for
loop) is not dplyr
-style, i find it more succinct. Thank you.– user7647857
Nov 22 '18 at 11:28
Although the later variant (with
for
loop) is not dplyr
-style, i find it more succinct. Thank you.– user7647857
Nov 22 '18 at 11:28
add a comment |
What about:
library(tidyverse)
dynamic_function <- function(df, list_var, m_var, order_var, ...) {
group_var <- quos(...)
order_var <- enquo(order_var)
byvar1 <- enquo(m_var)
byvar2 <- "key"
by <- setNames(quo_name(byvar2), quo_name(byvar1))
list_var <- data.frame(sapply(list_var, '[', seq(max(lengths(list_var))))) %>%
gather() %>% na.omit()
df_gathered <- df %>%
mutate(rown = row_number()) %>%
gather(key, value, !!! group_var) %>%
left_join(list_var, by = by) %>%
filter(key == value.y) %>%
group_by(!! byvar1, !! order_var) %>%
mutate(
value = case_when(
!! order_var > 0 ~ !! order_var,
TRUE ~ value.x
)
) %>% ungroup() %>% distinct(!! byvar1, !! order_var, key, value, rown) %>%
spread(key, value) %>%
group_by(!! byvar1, !! order_var, rown) %>%
replace(., is.na(.), 0) %>%
summarise_at(vars(!!! group_var), funs(sum)) %>%
arrange(rown) %>% select(-rown) %>% ungroup()
return(df_gathered)
}
You can call this function like:
dfs <- dynamic_function(df, list_var = pr, m_var = m, order_var = order, a, b, c)
Where df
is you dataframe name, list_var
is your list name, m_var
is the name of m column, order_var
is the name of order column, and a, b, c
are dynamic columns you want (you can add d, e, f
...).
Output:
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2 2 2 2
2 y 3 3 3 0
3 x 0 -1 0 0
4 y 0 -1 0 0
5 x 0 0 -1 0
6 x 0 0 0 -1
7 z 2 2 0 0
8 y 0 -1 0 0
9 z 0 -1 0 0
You will get a warning about attributes which you can ignore.
add a comment |
What about:
library(tidyverse)
dynamic_function <- function(df, list_var, m_var, order_var, ...) {
group_var <- quos(...)
order_var <- enquo(order_var)
byvar1 <- enquo(m_var)
byvar2 <- "key"
by <- setNames(quo_name(byvar2), quo_name(byvar1))
list_var <- data.frame(sapply(list_var, '[', seq(max(lengths(list_var))))) %>%
gather() %>% na.omit()
df_gathered <- df %>%
mutate(rown = row_number()) %>%
gather(key, value, !!! group_var) %>%
left_join(list_var, by = by) %>%
filter(key == value.y) %>%
group_by(!! byvar1, !! order_var) %>%
mutate(
value = case_when(
!! order_var > 0 ~ !! order_var,
TRUE ~ value.x
)
) %>% ungroup() %>% distinct(!! byvar1, !! order_var, key, value, rown) %>%
spread(key, value) %>%
group_by(!! byvar1, !! order_var, rown) %>%
replace(., is.na(.), 0) %>%
summarise_at(vars(!!! group_var), funs(sum)) %>%
arrange(rown) %>% select(-rown) %>% ungroup()
return(df_gathered)
}
You can call this function like:
dfs <- dynamic_function(df, list_var = pr, m_var = m, order_var = order, a, b, c)
Where df
is you dataframe name, list_var
is your list name, m_var
is the name of m column, order_var
is the name of order column, and a, b, c
are dynamic columns you want (you can add d, e, f
...).
Output:
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2 2 2 2
2 y 3 3 3 0
3 x 0 -1 0 0
4 y 0 -1 0 0
5 x 0 0 -1 0
6 x 0 0 0 -1
7 z 2 2 0 0
8 y 0 -1 0 0
9 z 0 -1 0 0
You will get a warning about attributes which you can ignore.
add a comment |
What about:
library(tidyverse)
dynamic_function <- function(df, list_var, m_var, order_var, ...) {
group_var <- quos(...)
order_var <- enquo(order_var)
byvar1 <- enquo(m_var)
byvar2 <- "key"
by <- setNames(quo_name(byvar2), quo_name(byvar1))
list_var <- data.frame(sapply(list_var, '[', seq(max(lengths(list_var))))) %>%
gather() %>% na.omit()
df_gathered <- df %>%
mutate(rown = row_number()) %>%
gather(key, value, !!! group_var) %>%
left_join(list_var, by = by) %>%
filter(key == value.y) %>%
group_by(!! byvar1, !! order_var) %>%
mutate(
value = case_when(
!! order_var > 0 ~ !! order_var,
TRUE ~ value.x
)
) %>% ungroup() %>% distinct(!! byvar1, !! order_var, key, value, rown) %>%
spread(key, value) %>%
group_by(!! byvar1, !! order_var, rown) %>%
replace(., is.na(.), 0) %>%
summarise_at(vars(!!! group_var), funs(sum)) %>%
arrange(rown) %>% select(-rown) %>% ungroup()
return(df_gathered)
}
You can call this function like:
dfs <- dynamic_function(df, list_var = pr, m_var = m, order_var = order, a, b, c)
Where df
is you dataframe name, list_var
is your list name, m_var
is the name of m column, order_var
is the name of order column, and a, b, c
are dynamic columns you want (you can add d, e, f
...).
Output:
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2 2 2 2
2 y 3 3 3 0
3 x 0 -1 0 0
4 y 0 -1 0 0
5 x 0 0 -1 0
6 x 0 0 0 -1
7 z 2 2 0 0
8 y 0 -1 0 0
9 z 0 -1 0 0
You will get a warning about attributes which you can ignore.
What about:
library(tidyverse)
dynamic_function <- function(df, list_var, m_var, order_var, ...) {
group_var <- quos(...)
order_var <- enquo(order_var)
byvar1 <- enquo(m_var)
byvar2 <- "key"
by <- setNames(quo_name(byvar2), quo_name(byvar1))
list_var <- data.frame(sapply(list_var, '[', seq(max(lengths(list_var))))) %>%
gather() %>% na.omit()
df_gathered <- df %>%
mutate(rown = row_number()) %>%
gather(key, value, !!! group_var) %>%
left_join(list_var, by = by) %>%
filter(key == value.y) %>%
group_by(!! byvar1, !! order_var) %>%
mutate(
value = case_when(
!! order_var > 0 ~ !! order_var,
TRUE ~ value.x
)
) %>% ungroup() %>% distinct(!! byvar1, !! order_var, key, value, rown) %>%
spread(key, value) %>%
group_by(!! byvar1, !! order_var, rown) %>%
replace(., is.na(.), 0) %>%
summarise_at(vars(!!! group_var), funs(sum)) %>%
arrange(rown) %>% select(-rown) %>% ungroup()
return(df_gathered)
}
You can call this function like:
dfs <- dynamic_function(df, list_var = pr, m_var = m, order_var = order, a, b, c)
Where df
is you dataframe name, list_var
is your list name, m_var
is the name of m column, order_var
is the name of order column, and a, b, c
are dynamic columns you want (you can add d, e, f
...).
Output:
# A tibble: 9 x 5
m order a b c
<chr> <dbl> <dbl> <dbl> <dbl>
1 x 2 2 2 2
2 y 3 3 3 0
3 x 0 -1 0 0
4 y 0 -1 0 0
5 x 0 0 -1 0
6 x 0 0 0 -1
7 z 2 2 0 0
8 y 0 -1 0 0
9 z 0 -1 0 0
You will get a warning about attributes which you can ignore.
edited Nov 21 '18 at 16:40
answered Nov 21 '18 at 16:10
arg0nautarg0naut
2,077314
2,077314
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53414722%2fapply-a-function-to-a-dynamically-changed-number-of-columns-for-each-row%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown