Any two of the subsequences ${a_{2k}}, {a_{2k+1}}, {a_{3k}}$ converge do not imply ${a_k}$ converges?
$begingroup$
If ${a_k}$ is a sequence, I have shown if the three subsequences ${a_{2k}}, {a_{2k+1}}, {a_{3k}}$ all converge, then the sequence converges.
I am asked whether the sequence converges if only two of them converge. Any help will be appreciated.
I first show the limits are the same. Let us assume $lim a_{2k} = a, lim a_{2k+1}=b, lim a_{3k}=c$. Then $lim_{6k} = a = c$ and $lim_{6k +3} = b = c$. Now pick any $varepsilon > 0$, there are $N_1, N_2$ such that
begin{align*}
&|a_{2k} -a | < varepsilon, text{ if }2k ge N_1, \
&|a_{2k+1} -a | < varepsilon, text{ if }2k+1 ge N_2.
end{align*}
So if $n ge max(N_1, N_2)$, we get $|a_n -a| < varepsilon$.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
If ${a_k}$ is a sequence, I have shown if the three subsequences ${a_{2k}}, {a_{2k+1}}, {a_{3k}}$ all converge, then the sequence converges.
I am asked whether the sequence converges if only two of them converge. Any help will be appreciated.
I first show the limits are the same. Let us assume $lim a_{2k} = a, lim a_{2k+1}=b, lim a_{3k}=c$. Then $lim_{6k} = a = c$ and $lim_{6k +3} = b = c$. Now pick any $varepsilon > 0$, there are $N_1, N_2$ such that
begin{align*}
&|a_{2k} -a | < varepsilon, text{ if }2k ge N_1, \
&|a_{2k+1} -a | < varepsilon, text{ if }2k+1 ge N_2.
end{align*}
So if $n ge max(N_1, N_2)$, we get $|a_n -a| < varepsilon$.
sequences-and-series convergence
$endgroup$
3
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16
add a comment |
$begingroup$
If ${a_k}$ is a sequence, I have shown if the three subsequences ${a_{2k}}, {a_{2k+1}}, {a_{3k}}$ all converge, then the sequence converges.
I am asked whether the sequence converges if only two of them converge. Any help will be appreciated.
I first show the limits are the same. Let us assume $lim a_{2k} = a, lim a_{2k+1}=b, lim a_{3k}=c$. Then $lim_{6k} = a = c$ and $lim_{6k +3} = b = c$. Now pick any $varepsilon > 0$, there are $N_1, N_2$ such that
begin{align*}
&|a_{2k} -a | < varepsilon, text{ if }2k ge N_1, \
&|a_{2k+1} -a | < varepsilon, text{ if }2k+1 ge N_2.
end{align*}
So if $n ge max(N_1, N_2)$, we get $|a_n -a| < varepsilon$.
sequences-and-series convergence
$endgroup$
If ${a_k}$ is a sequence, I have shown if the three subsequences ${a_{2k}}, {a_{2k+1}}, {a_{3k}}$ all converge, then the sequence converges.
I am asked whether the sequence converges if only two of them converge. Any help will be appreciated.
I first show the limits are the same. Let us assume $lim a_{2k} = a, lim a_{2k+1}=b, lim a_{3k}=c$. Then $lim_{6k} = a = c$ and $lim_{6k +3} = b = c$. Now pick any $varepsilon > 0$, there are $N_1, N_2$ such that
begin{align*}
&|a_{2k} -a | < varepsilon, text{ if }2k ge N_1, \
&|a_{2k+1} -a | < varepsilon, text{ if }2k+1 ge N_2.
end{align*}
So if $n ge max(N_1, N_2)$, we get $|a_n -a| < varepsilon$.
sequences-and-series convergence
sequences-and-series convergence
edited Dec 14 '18 at 18:46
user43210
asked Dec 14 '18 at 18:32
user43210user43210
406
406
3
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16
add a comment |
3
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16
3
3
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
The answer is no. I remember I learned the example from my analysis class.
Take $a_n = (-1)^n$, then $lim_{k to infty} a_{2k} =1$ and $lim_{k to infty} a_{2k-1} = -1$.
If $$a_k = begin{cases} 0, & text{ if } n=2^k, k = 0, 1, dots , \
1 & text{ otherwise. } end{cases}$$ Then $lim_{k to infty} a_{3k} = 1 $ and $lim_{k to infty} a_{2k+1} = 1$ but $lim_{k to infty} a_{2k}$ does not exist.
Finally, if
$$ a_n = begin{cases} 0 & text{ if $n$ is prime }, \ 1 & text{ if $n$ is not prime.} end{cases}$$
We can check $lim_{k to infty} a_{3k} = 1$ and $lim_{k to infty} a_{2k} =1 $ but $lim_{k to infty} a_{2k+1}$ does not exist.
$endgroup$
add a comment |
$begingroup$
This is not true. Consider the sequence defined by $a_{2k}=0$ and $a_{2k+1}=1$.
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ defined by
$$a_{6k}=1$$
$$a_{6k+1}=a_{6k+5}=0$$
$$a_{6k+2}=1$$
$$a_{6k+3}=1$$
$$a_{6k+4}=1$$
then
$(a_{3n})$ and $(a_{2n})$ converge but
$(a_n)$ does not.
$endgroup$
add a comment |
$begingroup$
Convergence of Two of the Subsequences
Consider the following three sequences
$$
a_kleft{begin{array}{}0&text{if }kequiv0pmod2\1&text{if }kequiv1pmod2end{array}right.
$$
$limlimits_{ktoinfty}a_{2k}=0$ and $limlimits_{ktoinfty}a_{2k+1}=1$.
$$
b_kleft{begin{array}{}0&text{if }knotequiv1pmod6\1&text{if }kequiv1pmod6end{array}right.
$$
$limlimits_{ktoinfty}b_{2k}=0$ and $limlimits_{ktoinfty}b_{3k}=0$, but $limlimits_{ktoinfty}b_{6k+1}=1$.
$$
c_kleft{begin{array}{}0&text{if }knotequiv2pmod6\1&text{if }kequiv2pmod6end{array}right.
$$
$limlimits_{ktoinfty}c_{2k+1}=0$ and $limlimits_{ktoinfty}c_{3k}=0$, but $limlimits_{ktoinfty}c_{6k+2}=1$.
For a sequence to converge, all subsequences must converge to the same limit.
Thus, the convergence of two of the subsequences does not imply the convergence of the whole sequence.
$endgroup$
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
add a comment |
$begingroup$
Let $a_{2k}to a, a_{2k+1}to bne a$. Now since $a_{6k}to a$ and $a_{6k+3}to bne a, a_{3k}$ is not convergent.
Since $a_{2k}to a, forallvarepsilon>0, exists n_1inBbb N$ such that $|a_{2k}-a|<varepsilon, forall2kge n_1$
Since $a_{2k+1}to b,exists n_2inBbb N$ such that $|a_{2k+1}-b|<varepsilon, forall2k+1ge n_2$
Let us assume $a_n$ converges. This means $a_n$ is Cauchy, or $forall varepsilon_1>0,exists n_3inBbb N$ such that $|x_n-x_m|<varepsilon_1forall n,mge n_3$.
Chose $n=m-1=2kgemax{n_1,n_2,n_3},varepsilon=varepsilon_1=frac14|a-b|>0$
$|a_{2k}-a_{2k+1}|<frac14|a-b|$ from the convergence of $a_n$, but
$a_{2k}in(a-varepsilon, a+varepsilon), a_{2k+1}in(b-varepsilon,b+varepsilon)implies |a_{2k}-a_{2k+1}|>varepsilon_1$
which is a contradiction.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039753%2fany-two-of-the-subsequences-a-2k-a-2k1-a-3k-converge-do-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is no. I remember I learned the example from my analysis class.
Take $a_n = (-1)^n$, then $lim_{k to infty} a_{2k} =1$ and $lim_{k to infty} a_{2k-1} = -1$.
If $$a_k = begin{cases} 0, & text{ if } n=2^k, k = 0, 1, dots , \
1 & text{ otherwise. } end{cases}$$ Then $lim_{k to infty} a_{3k} = 1 $ and $lim_{k to infty} a_{2k+1} = 1$ but $lim_{k to infty} a_{2k}$ does not exist.
Finally, if
$$ a_n = begin{cases} 0 & text{ if $n$ is prime }, \ 1 & text{ if $n$ is not prime.} end{cases}$$
We can check $lim_{k to infty} a_{3k} = 1$ and $lim_{k to infty} a_{2k} =1 $ but $lim_{k to infty} a_{2k+1}$ does not exist.
$endgroup$
add a comment |
$begingroup$
The answer is no. I remember I learned the example from my analysis class.
Take $a_n = (-1)^n$, then $lim_{k to infty} a_{2k} =1$ and $lim_{k to infty} a_{2k-1} = -1$.
If $$a_k = begin{cases} 0, & text{ if } n=2^k, k = 0, 1, dots , \
1 & text{ otherwise. } end{cases}$$ Then $lim_{k to infty} a_{3k} = 1 $ and $lim_{k to infty} a_{2k+1} = 1$ but $lim_{k to infty} a_{2k}$ does not exist.
Finally, if
$$ a_n = begin{cases} 0 & text{ if $n$ is prime }, \ 1 & text{ if $n$ is not prime.} end{cases}$$
We can check $lim_{k to infty} a_{3k} = 1$ and $lim_{k to infty} a_{2k} =1 $ but $lim_{k to infty} a_{2k+1}$ does not exist.
$endgroup$
add a comment |
$begingroup$
The answer is no. I remember I learned the example from my analysis class.
Take $a_n = (-1)^n$, then $lim_{k to infty} a_{2k} =1$ and $lim_{k to infty} a_{2k-1} = -1$.
If $$a_k = begin{cases} 0, & text{ if } n=2^k, k = 0, 1, dots , \
1 & text{ otherwise. } end{cases}$$ Then $lim_{k to infty} a_{3k} = 1 $ and $lim_{k to infty} a_{2k+1} = 1$ but $lim_{k to infty} a_{2k}$ does not exist.
Finally, if
$$ a_n = begin{cases} 0 & text{ if $n$ is prime }, \ 1 & text{ if $n$ is not prime.} end{cases}$$
We can check $lim_{k to infty} a_{3k} = 1$ and $lim_{k to infty} a_{2k} =1 $ but $lim_{k to infty} a_{2k+1}$ does not exist.
$endgroup$
The answer is no. I remember I learned the example from my analysis class.
Take $a_n = (-1)^n$, then $lim_{k to infty} a_{2k} =1$ and $lim_{k to infty} a_{2k-1} = -1$.
If $$a_k = begin{cases} 0, & text{ if } n=2^k, k = 0, 1, dots , \
1 & text{ otherwise. } end{cases}$$ Then $lim_{k to infty} a_{3k} = 1 $ and $lim_{k to infty} a_{2k+1} = 1$ but $lim_{k to infty} a_{2k}$ does not exist.
Finally, if
$$ a_n = begin{cases} 0 & text{ if $n$ is prime }, \ 1 & text{ if $n$ is not prime.} end{cases}$$
We can check $lim_{k to infty} a_{3k} = 1$ and $lim_{k to infty} a_{2k} =1 $ but $lim_{k to infty} a_{2k+1}$ does not exist.
answered Dec 14 '18 at 18:36
user1101010user1101010
7411730
7411730
add a comment |
add a comment |
$begingroup$
This is not true. Consider the sequence defined by $a_{2k}=0$ and $a_{2k+1}=1$.
$endgroup$
add a comment |
$begingroup$
This is not true. Consider the sequence defined by $a_{2k}=0$ and $a_{2k+1}=1$.
$endgroup$
add a comment |
$begingroup$
This is not true. Consider the sequence defined by $a_{2k}=0$ and $a_{2k+1}=1$.
$endgroup$
This is not true. Consider the sequence defined by $a_{2k}=0$ and $a_{2k+1}=1$.
answered Dec 14 '18 at 18:36
GenericMathGuyGenericMathGuy
1312
1312
add a comment |
add a comment |
$begingroup$
Let $(a_n)$ defined by
$$a_{6k}=1$$
$$a_{6k+1}=a_{6k+5}=0$$
$$a_{6k+2}=1$$
$$a_{6k+3}=1$$
$$a_{6k+4}=1$$
then
$(a_{3n})$ and $(a_{2n})$ converge but
$(a_n)$ does not.
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ defined by
$$a_{6k}=1$$
$$a_{6k+1}=a_{6k+5}=0$$
$$a_{6k+2}=1$$
$$a_{6k+3}=1$$
$$a_{6k+4}=1$$
then
$(a_{3n})$ and $(a_{2n})$ converge but
$(a_n)$ does not.
$endgroup$
add a comment |
$begingroup$
Let $(a_n)$ defined by
$$a_{6k}=1$$
$$a_{6k+1}=a_{6k+5}=0$$
$$a_{6k+2}=1$$
$$a_{6k+3}=1$$
$$a_{6k+4}=1$$
then
$(a_{3n})$ and $(a_{2n})$ converge but
$(a_n)$ does not.
$endgroup$
Let $(a_n)$ defined by
$$a_{6k}=1$$
$$a_{6k+1}=a_{6k+5}=0$$
$$a_{6k+2}=1$$
$$a_{6k+3}=1$$
$$a_{6k+4}=1$$
then
$(a_{3n})$ and $(a_{2n})$ converge but
$(a_n)$ does not.
answered Dec 14 '18 at 18:47
hamam_Abdallahhamam_Abdallah
38.1k21634
38.1k21634
add a comment |
add a comment |
$begingroup$
Convergence of Two of the Subsequences
Consider the following three sequences
$$
a_kleft{begin{array}{}0&text{if }kequiv0pmod2\1&text{if }kequiv1pmod2end{array}right.
$$
$limlimits_{ktoinfty}a_{2k}=0$ and $limlimits_{ktoinfty}a_{2k+1}=1$.
$$
b_kleft{begin{array}{}0&text{if }knotequiv1pmod6\1&text{if }kequiv1pmod6end{array}right.
$$
$limlimits_{ktoinfty}b_{2k}=0$ and $limlimits_{ktoinfty}b_{3k}=0$, but $limlimits_{ktoinfty}b_{6k+1}=1$.
$$
c_kleft{begin{array}{}0&text{if }knotequiv2pmod6\1&text{if }kequiv2pmod6end{array}right.
$$
$limlimits_{ktoinfty}c_{2k+1}=0$ and $limlimits_{ktoinfty}c_{3k}=0$, but $limlimits_{ktoinfty}c_{6k+2}=1$.
For a sequence to converge, all subsequences must converge to the same limit.
Thus, the convergence of two of the subsequences does not imply the convergence of the whole sequence.
$endgroup$
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
add a comment |
$begingroup$
Convergence of Two of the Subsequences
Consider the following three sequences
$$
a_kleft{begin{array}{}0&text{if }kequiv0pmod2\1&text{if }kequiv1pmod2end{array}right.
$$
$limlimits_{ktoinfty}a_{2k}=0$ and $limlimits_{ktoinfty}a_{2k+1}=1$.
$$
b_kleft{begin{array}{}0&text{if }knotequiv1pmod6\1&text{if }kequiv1pmod6end{array}right.
$$
$limlimits_{ktoinfty}b_{2k}=0$ and $limlimits_{ktoinfty}b_{3k}=0$, but $limlimits_{ktoinfty}b_{6k+1}=1$.
$$
c_kleft{begin{array}{}0&text{if }knotequiv2pmod6\1&text{if }kequiv2pmod6end{array}right.
$$
$limlimits_{ktoinfty}c_{2k+1}=0$ and $limlimits_{ktoinfty}c_{3k}=0$, but $limlimits_{ktoinfty}c_{6k+2}=1$.
For a sequence to converge, all subsequences must converge to the same limit.
Thus, the convergence of two of the subsequences does not imply the convergence of the whole sequence.
$endgroup$
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
add a comment |
$begingroup$
Convergence of Two of the Subsequences
Consider the following three sequences
$$
a_kleft{begin{array}{}0&text{if }kequiv0pmod2\1&text{if }kequiv1pmod2end{array}right.
$$
$limlimits_{ktoinfty}a_{2k}=0$ and $limlimits_{ktoinfty}a_{2k+1}=1$.
$$
b_kleft{begin{array}{}0&text{if }knotequiv1pmod6\1&text{if }kequiv1pmod6end{array}right.
$$
$limlimits_{ktoinfty}b_{2k}=0$ and $limlimits_{ktoinfty}b_{3k}=0$, but $limlimits_{ktoinfty}b_{6k+1}=1$.
$$
c_kleft{begin{array}{}0&text{if }knotequiv2pmod6\1&text{if }kequiv2pmod6end{array}right.
$$
$limlimits_{ktoinfty}c_{2k+1}=0$ and $limlimits_{ktoinfty}c_{3k}=0$, but $limlimits_{ktoinfty}c_{6k+2}=1$.
For a sequence to converge, all subsequences must converge to the same limit.
Thus, the convergence of two of the subsequences does not imply the convergence of the whole sequence.
$endgroup$
Convergence of Two of the Subsequences
Consider the following three sequences
$$
a_kleft{begin{array}{}0&text{if }kequiv0pmod2\1&text{if }kequiv1pmod2end{array}right.
$$
$limlimits_{ktoinfty}a_{2k}=0$ and $limlimits_{ktoinfty}a_{2k+1}=1$.
$$
b_kleft{begin{array}{}0&text{if }knotequiv1pmod6\1&text{if }kequiv1pmod6end{array}right.
$$
$limlimits_{ktoinfty}b_{2k}=0$ and $limlimits_{ktoinfty}b_{3k}=0$, but $limlimits_{ktoinfty}b_{6k+1}=1$.
$$
c_kleft{begin{array}{}0&text{if }knotequiv2pmod6\1&text{if }kequiv2pmod6end{array}right.
$$
$limlimits_{ktoinfty}c_{2k+1}=0$ and $limlimits_{ktoinfty}c_{3k}=0$, but $limlimits_{ktoinfty}c_{6k+2}=1$.
For a sequence to converge, all subsequences must converge to the same limit.
Thus, the convergence of two of the subsequences does not imply the convergence of the whole sequence.
edited Dec 14 '18 at 19:58
answered Dec 14 '18 at 19:13
robjohn♦robjohn
267k27308632
267k27308632
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
add a comment |
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
$begingroup$
This should be the accepted answer imo, it shows the underlying issue clearly.
$endgroup$
– copper.hat
Dec 14 '18 at 21:24
add a comment |
$begingroup$
Let $a_{2k}to a, a_{2k+1}to bne a$. Now since $a_{6k}to a$ and $a_{6k+3}to bne a, a_{3k}$ is not convergent.
Since $a_{2k}to a, forallvarepsilon>0, exists n_1inBbb N$ such that $|a_{2k}-a|<varepsilon, forall2kge n_1$
Since $a_{2k+1}to b,exists n_2inBbb N$ such that $|a_{2k+1}-b|<varepsilon, forall2k+1ge n_2$
Let us assume $a_n$ converges. This means $a_n$ is Cauchy, or $forall varepsilon_1>0,exists n_3inBbb N$ such that $|x_n-x_m|<varepsilon_1forall n,mge n_3$.
Chose $n=m-1=2kgemax{n_1,n_2,n_3},varepsilon=varepsilon_1=frac14|a-b|>0$
$|a_{2k}-a_{2k+1}|<frac14|a-b|$ from the convergence of $a_n$, but
$a_{2k}in(a-varepsilon, a+varepsilon), a_{2k+1}in(b-varepsilon,b+varepsilon)implies |a_{2k}-a_{2k+1}|>varepsilon_1$
which is a contradiction.
$endgroup$
add a comment |
$begingroup$
Let $a_{2k}to a, a_{2k+1}to bne a$. Now since $a_{6k}to a$ and $a_{6k+3}to bne a, a_{3k}$ is not convergent.
Since $a_{2k}to a, forallvarepsilon>0, exists n_1inBbb N$ such that $|a_{2k}-a|<varepsilon, forall2kge n_1$
Since $a_{2k+1}to b,exists n_2inBbb N$ such that $|a_{2k+1}-b|<varepsilon, forall2k+1ge n_2$
Let us assume $a_n$ converges. This means $a_n$ is Cauchy, or $forall varepsilon_1>0,exists n_3inBbb N$ such that $|x_n-x_m|<varepsilon_1forall n,mge n_3$.
Chose $n=m-1=2kgemax{n_1,n_2,n_3},varepsilon=varepsilon_1=frac14|a-b|>0$
$|a_{2k}-a_{2k+1}|<frac14|a-b|$ from the convergence of $a_n$, but
$a_{2k}in(a-varepsilon, a+varepsilon), a_{2k+1}in(b-varepsilon,b+varepsilon)implies |a_{2k}-a_{2k+1}|>varepsilon_1$
which is a contradiction.
$endgroup$
add a comment |
$begingroup$
Let $a_{2k}to a, a_{2k+1}to bne a$. Now since $a_{6k}to a$ and $a_{6k+3}to bne a, a_{3k}$ is not convergent.
Since $a_{2k}to a, forallvarepsilon>0, exists n_1inBbb N$ such that $|a_{2k}-a|<varepsilon, forall2kge n_1$
Since $a_{2k+1}to b,exists n_2inBbb N$ such that $|a_{2k+1}-b|<varepsilon, forall2k+1ge n_2$
Let us assume $a_n$ converges. This means $a_n$ is Cauchy, or $forall varepsilon_1>0,exists n_3inBbb N$ such that $|x_n-x_m|<varepsilon_1forall n,mge n_3$.
Chose $n=m-1=2kgemax{n_1,n_2,n_3},varepsilon=varepsilon_1=frac14|a-b|>0$
$|a_{2k}-a_{2k+1}|<frac14|a-b|$ from the convergence of $a_n$, but
$a_{2k}in(a-varepsilon, a+varepsilon), a_{2k+1}in(b-varepsilon,b+varepsilon)implies |a_{2k}-a_{2k+1}|>varepsilon_1$
which is a contradiction.
$endgroup$
Let $a_{2k}to a, a_{2k+1}to bne a$. Now since $a_{6k}to a$ and $a_{6k+3}to bne a, a_{3k}$ is not convergent.
Since $a_{2k}to a, forallvarepsilon>0, exists n_1inBbb N$ such that $|a_{2k}-a|<varepsilon, forall2kge n_1$
Since $a_{2k+1}to b,exists n_2inBbb N$ such that $|a_{2k+1}-b|<varepsilon, forall2k+1ge n_2$
Let us assume $a_n$ converges. This means $a_n$ is Cauchy, or $forall varepsilon_1>0,exists n_3inBbb N$ such that $|x_n-x_m|<varepsilon_1forall n,mge n_3$.
Chose $n=m-1=2kgemax{n_1,n_2,n_3},varepsilon=varepsilon_1=frac14|a-b|>0$
$|a_{2k}-a_{2k+1}|<frac14|a-b|$ from the convergence of $a_n$, but
$a_{2k}in(a-varepsilon, a+varepsilon), a_{2k+1}in(b-varepsilon,b+varepsilon)implies |a_{2k}-a_{2k+1}|>varepsilon_1$
which is a contradiction.
edited Dec 14 '18 at 19:18
answered Dec 14 '18 at 18:50
Shubham JohriShubham Johri
5,192717
5,192717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039753%2fany-two-of-the-subsequences-a-2k-a-2k1-a-3k-converge-do-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
It would be better if you included your proof that the three subsequences converging implies the sequence converges. Otherwise, this may be closed for lack of context.
$endgroup$
– Theo Bendit
Dec 14 '18 at 18:34
$begingroup$
You can show by counter-example. $a_n=(-1)^n; a_{2k}to1,a_{2k+1}to-1$ but $a_k$ doesn't converge
$endgroup$
– Shubham Johri
Dec 14 '18 at 18:44
$begingroup$
the intuition is I guess that the each of the sequences intertwines the other two.
$endgroup$
– Soham
Dec 14 '18 at 19:16