Derivative of piecewise function with $sinfrac{1}{x}$ term
$begingroup$
I was going through my calculus book, and I am not sure I understand this part
$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$
So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?
calculus derivatives
$endgroup$
add a comment |
$begingroup$
I was going through my calculus book, and I am not sure I understand this part
$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$
So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?
calculus derivatives
$endgroup$
1
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06
add a comment |
$begingroup$
I was going through my calculus book, and I am not sure I understand this part
$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$
So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?
calculus derivatives
$endgroup$
I was going through my calculus book, and I am not sure I understand this part
$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$
$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$
So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?
calculus derivatives
calculus derivatives
edited Dec 14 '18 at 19:12
Bernard
121k740116
121k740116
asked Dec 14 '18 at 19:08
DovlaDovla
869
869
1
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06
add a comment |
1
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06
1
1
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}
$endgroup$
add a comment |
$begingroup$
hint
$$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$
$endgroup$
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039786%2fderivative-of-piecewise-function-with-sin-frac1x-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}
$endgroup$
add a comment |
$begingroup$
If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}
$endgroup$
add a comment |
$begingroup$
If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}
$endgroup$
If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}
answered Dec 14 '18 at 19:15
José Carlos SantosJosé Carlos Santos
160k22127232
160k22127232
add a comment |
add a comment |
$begingroup$
hint
$$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$
$endgroup$
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
add a comment |
$begingroup$
hint
$$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$
$endgroup$
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
add a comment |
$begingroup$
hint
$$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$
$endgroup$
hint
$$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$
edited Dec 14 '18 at 20:47
answered Dec 14 '18 at 19:14
hamam_Abdallahhamam_Abdallah
38.1k21634
38.1k21634
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
add a comment |
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
$begingroup$
@hardmath Done. thank you.
$endgroup$
– hamam_Abdallah
Dec 14 '18 at 20:47
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039786%2fderivative-of-piecewise-function-with-sin-frac1x-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06