Are these legitimate rules/formula for integration without using the substitution method?












0












$begingroup$


I'm talking about:



$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$



$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$



$int e^{ax+b}dx=frac{e^{ax+b}}{a}$



$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$



Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$



So for example if write my working as:



begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}



... based on the rule above



I just want to know if such working/rule applied is actually acceptable without using the substitution method.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
    $endgroup$
    – DavidG
    Dec 31 '18 at 0:35
















0












$begingroup$


I'm talking about:



$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$



$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$



$int e^{ax+b}dx=frac{e^{ax+b}}{a}$



$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$



Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$



So for example if write my working as:



begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}



... based on the rule above



I just want to know if such working/rule applied is actually acceptable without using the substitution method.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
    $endgroup$
    – DavidG
    Dec 31 '18 at 0:35














0












0








0





$begingroup$


I'm talking about:



$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$



$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$



$int e^{ax+b}dx=frac{e^{ax+b}}{a}$



$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$



Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$



So for example if write my working as:



begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}



... based on the rule above



I just want to know if such working/rule applied is actually acceptable without using the substitution method.










share|cite|improve this question











$endgroup$




I'm talking about:



$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$



$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$



$int e^{ax+b}dx=frac{e^{ax+b}}{a}$



$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$



Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$



So for example if write my working as:



begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}



... based on the rule above



I just want to know if such working/rule applied is actually acceptable without using the substitution method.







integration indefinite-integrals substitution






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 1:06









DavidG

1




1










asked Nov 15 '18 at 10:52









HeniasHenias

615




615












  • $begingroup$
    This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
    $endgroup$
    – DavidG
    Dec 31 '18 at 0:35


















  • $begingroup$
    This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
    $endgroup$
    – DavidG
    Dec 31 '18 at 0:35
















$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35




$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35










2 Answers
2






active

oldest

votes


















0












$begingroup$

Okay I'm going to prove/disprove each one of these bad boys.



#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct



#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct



#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct



#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct



As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    The second formula is false, the other formulas are correct.



    The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
      $endgroup$
      – Henias
      Nov 15 '18 at 11:12













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999524%2fare-these-legitimate-rules-formula-for-integration-without-using-the-substitutio%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Okay I'm going to prove/disprove each one of these bad boys.



    #1:
    $$I=int(ax+b)^nmathrm{d}x$$
    Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
    $$I=frac1aint u^nmathrm{d}u$$
    $$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
    Correct



    #2:
    $$I=intfrac{mathrm{d}x}{ax+b}$$
    substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
    $$I=frac1aintfrac{mathrm{d}u}u$$
    $$I=frac1aln|u|$$
    $$I=frac1aln|ax+b|, qquad aneq0$$
    You forgot the $|$ bars, but otherwise correct



    #3:
    $$I=int e^{ax+b}mathrm{d}x$$
    substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
    $$I=frac1aint e^umathrm{d}u$$
    $$I=frac1ae^u$$
    $$I=frac1ae^{ax+b}$$
    Correct



    #4:
    $$I=int a^{ax+b}mathrm{d}x$$
    $$I=int e^{(ax+b)ln a}mathrm{d}x$$
    substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
    $$I=frac1{aln a}int e^umathrm{d}u$$
    $$I=frac1{aln a}e^u$$
    $$I=frac{e^{(ax+b)ln a}}{aln a}$$
    $$I=frac{a^{ax+b}}{aln a}$$
    $$I=frac{a^{ax+b-1}}{ln a}$$
    Basically correct



    As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
    $$intfrac{mathrm{d}x}{x}=ln|x|$$
    every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Okay I'm going to prove/disprove each one of these bad boys.



      #1:
      $$I=int(ax+b)^nmathrm{d}x$$
      Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
      $$I=frac1aint u^nmathrm{d}u$$
      $$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
      Correct



      #2:
      $$I=intfrac{mathrm{d}x}{ax+b}$$
      substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
      $$I=frac1aintfrac{mathrm{d}u}u$$
      $$I=frac1aln|u|$$
      $$I=frac1aln|ax+b|, qquad aneq0$$
      You forgot the $|$ bars, but otherwise correct



      #3:
      $$I=int e^{ax+b}mathrm{d}x$$
      substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
      $$I=frac1aint e^umathrm{d}u$$
      $$I=frac1ae^u$$
      $$I=frac1ae^{ax+b}$$
      Correct



      #4:
      $$I=int a^{ax+b}mathrm{d}x$$
      $$I=int e^{(ax+b)ln a}mathrm{d}x$$
      substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
      $$I=frac1{aln a}int e^umathrm{d}u$$
      $$I=frac1{aln a}e^u$$
      $$I=frac{e^{(ax+b)ln a}}{aln a}$$
      $$I=frac{a^{ax+b}}{aln a}$$
      $$I=frac{a^{ax+b-1}}{ln a}$$
      Basically correct



      As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
      $$intfrac{mathrm{d}x}{x}=ln|x|$$
      every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Okay I'm going to prove/disprove each one of these bad boys.



        #1:
        $$I=int(ax+b)^nmathrm{d}x$$
        Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aint u^nmathrm{d}u$$
        $$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
        Correct



        #2:
        $$I=intfrac{mathrm{d}x}{ax+b}$$
        substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aintfrac{mathrm{d}u}u$$
        $$I=frac1aln|u|$$
        $$I=frac1aln|ax+b|, qquad aneq0$$
        You forgot the $|$ bars, but otherwise correct



        #3:
        $$I=int e^{ax+b}mathrm{d}x$$
        substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aint e^umathrm{d}u$$
        $$I=frac1ae^u$$
        $$I=frac1ae^{ax+b}$$
        Correct



        #4:
        $$I=int a^{ax+b}mathrm{d}x$$
        $$I=int e^{(ax+b)ln a}mathrm{d}x$$
        substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
        $$I=frac1{aln a}int e^umathrm{d}u$$
        $$I=frac1{aln a}e^u$$
        $$I=frac{e^{(ax+b)ln a}}{aln a}$$
        $$I=frac{a^{ax+b}}{aln a}$$
        $$I=frac{a^{ax+b-1}}{ln a}$$
        Basically correct



        As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
        $$intfrac{mathrm{d}x}{x}=ln|x|$$
        every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.






        share|cite|improve this answer











        $endgroup$



        Okay I'm going to prove/disprove each one of these bad boys.



        #1:
        $$I=int(ax+b)^nmathrm{d}x$$
        Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aint u^nmathrm{d}u$$
        $$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
        Correct



        #2:
        $$I=intfrac{mathrm{d}x}{ax+b}$$
        substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aintfrac{mathrm{d}u}u$$
        $$I=frac1aln|u|$$
        $$I=frac1aln|ax+b|, qquad aneq0$$
        You forgot the $|$ bars, but otherwise correct



        #3:
        $$I=int e^{ax+b}mathrm{d}x$$
        substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
        $$I=frac1aint e^umathrm{d}u$$
        $$I=frac1ae^u$$
        $$I=frac1ae^{ax+b}$$
        Correct



        #4:
        $$I=int a^{ax+b}mathrm{d}x$$
        $$I=int e^{(ax+b)ln a}mathrm{d}x$$
        substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
        $$I=frac1{aln a}int e^umathrm{d}u$$
        $$I=frac1{aln a}e^u$$
        $$I=frac{e^{(ax+b)ln a}}{aln a}$$
        $$I=frac{a^{ax+b}}{aln a}$$
        $$I=frac{a^{ax+b-1}}{ln a}$$
        Basically correct



        As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
        $$intfrac{mathrm{d}x}{x}=ln|x|$$
        every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 16 '18 at 17:27

























        answered Nov 15 '18 at 19:25









        clathratusclathratus

        5,1801438




        5,1801438























            1












            $begingroup$

            The second formula is false, the other formulas are correct.



            The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
              $endgroup$
              – Henias
              Nov 15 '18 at 11:12


















            1












            $begingroup$

            The second formula is false, the other formulas are correct.



            The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
              $endgroup$
              – Henias
              Nov 15 '18 at 11:12
















            1












            1








            1





            $begingroup$

            The second formula is false, the other formulas are correct.



            The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.






            share|cite|improve this answer









            $endgroup$



            The second formula is false, the other formulas are correct.



            The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 15 '18 at 11:00









            FredFred

            48.7k11849




            48.7k11849












            • $begingroup$
              Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
              $endgroup$
              – Henias
              Nov 15 '18 at 11:12




















            • $begingroup$
              Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
              $endgroup$
              – Henias
              Nov 15 '18 at 11:12


















            $begingroup$
            Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
            $endgroup$
            – Henias
            Nov 15 '18 at 11:12






            $begingroup$
            Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
            $endgroup$
            – Henias
            Nov 15 '18 at 11:12




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999524%2fare-these-legitimate-rules-formula-for-integration-without-using-the-substitutio%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen