Are these legitimate rules/formula for integration without using the substitution method?
$begingroup$
I'm talking about:
$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$
$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$
$int e^{ax+b}dx=frac{e^{ax+b}}{a}$
$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$
Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$
So for example if write my working as:
begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}
... based on the rule above
I just want to know if such working/rule applied is actually acceptable without using the substitution method.
integration indefinite-integrals substitution
$endgroup$
add a comment |
$begingroup$
I'm talking about:
$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$
$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$
$int e^{ax+b}dx=frac{e^{ax+b}}{a}$
$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$
Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$
So for example if write my working as:
begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}
... based on the rule above
I just want to know if such working/rule applied is actually acceptable without using the substitution method.
integration indefinite-integrals substitution
$endgroup$
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35
add a comment |
$begingroup$
I'm talking about:
$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$
$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$
$int e^{ax+b}dx=frac{e^{ax+b}}{a}$
$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$
Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$
So for example if write my working as:
begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}
... based on the rule above
I just want to know if such working/rule applied is actually acceptable without using the substitution method.
integration indefinite-integrals substitution
$endgroup$
I'm talking about:
$int(ax+b)^ndx=frac{(ax+b)^{n+1}}{(n+1)(a)}$
$intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$
$int e^{ax+b}dx=frac{e^{ax+b}}{a}$
$int a^{ax+b}dx=frac{a^{ax+b}}{(ln|a|)(a)}$
Of course, this only works for $(ax+b)$, not for other $f(x)$ with higher exponents like $x^2$ or $x^3$
So for example if write my working as:
begin{align}
int(2x+8)^3dx&=frac{(2x+8)^4}{(4)(2)} \
&=frac{1}{8}(2x+8)^4
end{align}
... based on the rule above
I just want to know if such working/rule applied is actually acceptable without using the substitution method.
integration indefinite-integrals substitution
integration indefinite-integrals substitution
edited Dec 31 '18 at 1:06
DavidG
1
1
asked Nov 15 '18 at 10:52
HeniasHenias
615
615
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35
add a comment |
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Okay I'm going to prove/disprove each one of these bad boys.
#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct
#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct
#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct
#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct
As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.
$endgroup$
add a comment |
$begingroup$
The second formula is false, the other formulas are correct.
The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.
$endgroup$
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999524%2fare-these-legitimate-rules-formula-for-integration-without-using-the-substitutio%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Okay I'm going to prove/disprove each one of these bad boys.
#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct
#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct
#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct
#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct
As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.
$endgroup$
add a comment |
$begingroup$
Okay I'm going to prove/disprove each one of these bad boys.
#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct
#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct
#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct
#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct
As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.
$endgroup$
add a comment |
$begingroup$
Okay I'm going to prove/disprove each one of these bad boys.
#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct
#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct
#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct
#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct
As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.
$endgroup$
Okay I'm going to prove/disprove each one of these bad boys.
#1:
$$I=int(ax+b)^nmathrm{d}x$$
Substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint u^nmathrm{d}u$$
$$I=frac{(ax+b)^{n+1}}{a(n+1)}$$
Correct
#2:
$$I=intfrac{mathrm{d}x}{ax+b}$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aintfrac{mathrm{d}u}u$$
$$I=frac1aln|u|$$
$$I=frac1aln|ax+b|, qquad aneq0$$
You forgot the $|$ bars, but otherwise correct
#3:
$$I=int e^{ax+b}mathrm{d}x$$
substitution: $u=ax+bRightarrow frac{mathrm{d}u}a=mathrm{d}x$
$$I=frac1aint e^umathrm{d}u$$
$$I=frac1ae^u$$
$$I=frac1ae^{ax+b}$$
Correct
#4:
$$I=int a^{ax+b}mathrm{d}x$$
$$I=int e^{(ax+b)ln a}mathrm{d}x$$
substitution: $u=(ax+b)ln aRightarrow frac{mathrm{d}u}{aln a}=mathrm{d}x$
$$I=frac1{aln a}int e^umathrm{d}u$$
$$I=frac1{aln a}e^u$$
$$I=frac{e^{(ax+b)ln a}}{aln a}$$
$$I=frac{a^{ax+b}}{aln a}$$
$$I=frac{a^{ax+b-1}}{ln a}$$
Basically correct
As you can see, these all require very simple substitutions to prove. And yes, once you have established a formula you can use that formula and you don't have to go through the work of actually integrating. Example: you don't go through the process of proving
$$intfrac{mathrm{d}x}{x}=ln|x|$$
every time you have to integrate it, do you? Of course not. By the same token, the formulas derived above can be used instead of going through the steps of integrating every time.
edited Nov 16 '18 at 17:27
answered Nov 15 '18 at 19:25
clathratusclathratus
5,1801438
5,1801438
add a comment |
add a comment |
$begingroup$
The second formula is false, the other formulas are correct.
The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.
$endgroup$
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
add a comment |
$begingroup$
The second formula is false, the other formulas are correct.
The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.
$endgroup$
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
add a comment |
$begingroup$
The second formula is false, the other formulas are correct.
The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.
$endgroup$
The second formula is false, the other formulas are correct.
The correct second formula reads as follows: for $a ne 0$ we have $intfrac{1}{ax+b}dx=frac{1}{a}ln(ax+b)$.
answered Nov 15 '18 at 11:00
FredFred
48.7k11849
48.7k11849
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
add a comment |
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
$begingroup$
Sorry, it's a typo, my bad. So if such formulas are legit, do you know why is it that every answers online uses the substitution method instead of a more straightforward way of getting the answer? socratic.org/questions/what-is-the-antiderivative-of-2x-1-3 quora.com/What-is-the-integrals-of-2x-1-%C2%B2
$endgroup$
– Henias
Nov 15 '18 at 11:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999524%2fare-these-legitimate-rules-formula-for-integration-without-using-the-substitutio%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is minor, but in each of your integrals you need to include the constant of integration (generally written as $C$ - as I'm sure you are familiar with).
$endgroup$
– DavidG
Dec 31 '18 at 0:35