Conjecture $sumlimits_{n=0}^{infty}{2n choose n}^22^{-4n} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{2C}{pi} $












8












$begingroup$


I was observing this interesting paper



and conjecture this result,



$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$



Where C is Catalan's constant $=0.9156965...$



I am unable to present a prove of $(1)$.



How do we go about to prove its?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
    $endgroup$
    – Steve Kass
    Dec 29 '18 at 21:58


















8












$begingroup$


I was observing this interesting paper



and conjecture this result,



$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$



Where C is Catalan's constant $=0.9156965...$



I am unable to present a prove of $(1)$.



How do we go about to prove its?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
    $endgroup$
    – Steve Kass
    Dec 29 '18 at 21:58
















8












8








8


6



$begingroup$


I was observing this interesting paper



and conjecture this result,



$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$



Where C is Catalan's constant $=0.9156965...$



I am unable to present a prove of $(1)$.



How do we go about to prove its?










share|cite|improve this question











$endgroup$




I was observing this interesting paper



and conjecture this result,



$$sum_{n=0}^{infty}frac{{2n choose n}^2}{2^{4n+1}} frac{n(6n-1)}{(2n-1)^2(2n+1)}=frac{C}{pi} tag1$$



Where C is Catalan's constant $=0.9156965...$



I am unable to present a prove of $(1)$.



How do we go about to prove its?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 22:11









Did

248k23226466




248k23226466










asked Dec 29 '18 at 21:45









user583851user583851

518110




518110








  • 2




    $begingroup$
    Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
    $endgroup$
    – Steve Kass
    Dec 29 '18 at 21:58
















  • 2




    $begingroup$
    Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
    $endgroup$
    – Steve Kass
    Dec 29 '18 at 21:58










2




2




$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58






$begingroup$
Mathematica agrees with your conjecture, and it gives the answer very quickly, suggesting there is a reasonably straightforward derivation. I can’t suggest how to prove it myself. A similar sum is mentioned here, with some suggested approaches. math.stackexchange.com/a/3054440/60500
$endgroup$
– Steve Kass
Dec 29 '18 at 21:58












2 Answers
2






active

oldest

votes


















11












$begingroup$

Answer Without Legendre Polynomials and Elliptic Integrals



Using the integral
$$
frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
$$

and the sum
$$
sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
$$

we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
=frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
$$

Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
&=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
&=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
end{align}
$$

Plugging in $r=1$, and using the result from $(11)$, yields
$$
begin{align}
color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
&=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
&=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
&=color{#C00}{frac{4mathrm{G}}pi}tag5
end{align}
$$

where $mathrm{G}$ is Catalan's Constant.



Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
$$
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
=frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
$$

Plugging in $r=1$ yields
$$
begin{align}
color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
&=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
&=color{#090}{-frac2pi}tag7
end{align}
$$

Dividing $(6)$ by $r$, and integrating in $r$, we get
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
&=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
&=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
end{align}
$$

Plugging in $r=1$ yields
$$
begin{align}
color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
&=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
&=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
&=color{#00F}{frac4pi}tag9
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
&=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
&=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
&=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
end{align}
$$





Result used in $boldsymbol{(5)}$:
$$
begin{align}
int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
&=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
&=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
&=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
&=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
&=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
&=2mathrm{G}tag{11}
end{align}
$$






share|cite|improve this answer











$endgroup$





















    15












    $begingroup$

    Fourier-Legendre series provide a very simple derivation. We may recall that
    $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
    $$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
    hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals



    $$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
    $$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
    All of them are straightforward, since
    $$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
    $$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
    $$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
    hence
    $$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$



    This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Jack, your work and contribution to this site are truly remarkable.
      $endgroup$
      – Klangen
      Dec 30 '18 at 21:57










    • $begingroup$
      @Klangen: I'm flattered :)
      $endgroup$
      – Jack D'Aurizio
      Dec 30 '18 at 22:46











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056291%2fconjecture-sum-limits-n-0-infty2n-choose-n22-4n-fracn6n-12n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    Answer Without Legendre Polynomials and Elliptic Integrals



    Using the integral
    $$
    frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
    $$

    and the sum
    $$
    sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
    $$

    we get
    $$
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
    =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
    $$

    Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
    $$
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
    &=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
    &=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
    end{align}
    $$

    Plugging in $r=1$, and using the result from $(11)$, yields
    $$
    begin{align}
    color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
    &=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
    &=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
    &=color{#C00}{frac{4mathrm{G}}pi}tag5
    end{align}
    $$

    where $mathrm{G}$ is Catalan's Constant.



    Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
    $$
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
    =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
    $$

    Plugging in $r=1$ yields
    $$
    begin{align}
    color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
    &=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
    &=color{#090}{-frac2pi}tag7
    end{align}
    $$

    Dividing $(6)$ by $r$, and integrating in $r$, we get
    $$
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
    &=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
    &=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
    end{align}
    $$

    Plugging in $r=1$ yields
    $$
    begin{align}
    color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
    &=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
    &=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
    &=color{#00F}{frac4pi}tag9
    end{align}
    $$

    Therefore,
    $$
    begin{align}
    sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
    &=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
    &=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
    &=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
    end{align}
    $$





    Result used in $boldsymbol{(5)}$:
    $$
    begin{align}
    int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
    &=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
    &=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
    &=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
    &=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
    &=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
    &=2mathrm{G}tag{11}
    end{align}
    $$






    share|cite|improve this answer











    $endgroup$


















      11












      $begingroup$

      Answer Without Legendre Polynomials and Elliptic Integrals



      Using the integral
      $$
      frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
      $$

      and the sum
      $$
      sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
      $$

      we get
      $$
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
      =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
      $$

      Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
      $$
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
      &=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
      &=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
      end{align}
      $$

      Plugging in $r=1$, and using the result from $(11)$, yields
      $$
      begin{align}
      color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
      &=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
      &=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
      &=color{#C00}{frac{4mathrm{G}}pi}tag5
      end{align}
      $$

      where $mathrm{G}$ is Catalan's Constant.



      Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
      $$
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
      =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
      $$

      Plugging in $r=1$ yields
      $$
      begin{align}
      color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
      &=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
      &=color{#090}{-frac2pi}tag7
      end{align}
      $$

      Dividing $(6)$ by $r$, and integrating in $r$, we get
      $$
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
      &=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
      &=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
      end{align}
      $$

      Plugging in $r=1$ yields
      $$
      begin{align}
      color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
      &=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
      &=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
      &=color{#00F}{frac4pi}tag9
      end{align}
      $$

      Therefore,
      $$
      begin{align}
      sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
      &=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
      &=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
      &=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
      end{align}
      $$





      Result used in $boldsymbol{(5)}$:
      $$
      begin{align}
      int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
      &=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
      &=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
      &=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
      &=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
      &=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
      &=2mathrm{G}tag{11}
      end{align}
      $$






      share|cite|improve this answer











      $endgroup$
















        11












        11








        11





        $begingroup$

        Answer Without Legendre Polynomials and Elliptic Integrals



        Using the integral
        $$
        frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
        $$

        and the sum
        $$
        sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
        $$

        we get
        $$
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
        =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
        $$

        Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
        &=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
        &=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
        end{align}
        $$

        Plugging in $r=1$, and using the result from $(11)$, yields
        $$
        begin{align}
        color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
        &=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
        &=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
        &=color{#C00}{frac{4mathrm{G}}pi}tag5
        end{align}
        $$

        where $mathrm{G}$ is Catalan's Constant.



        Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
        $$
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
        =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
        $$

        Plugging in $r=1$ yields
        $$
        begin{align}
        color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
        &=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
        &=color{#090}{-frac2pi}tag7
        end{align}
        $$

        Dividing $(6)$ by $r$, and integrating in $r$, we get
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
        &=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
        &=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
        end{align}
        $$

        Plugging in $r=1$ yields
        $$
        begin{align}
        color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
        &=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
        &=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
        &=color{#00F}{frac4pi}tag9
        end{align}
        $$

        Therefore,
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
        &=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
        &=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
        &=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
        end{align}
        $$





        Result used in $boldsymbol{(5)}$:
        $$
        begin{align}
        int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
        &=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
        &=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
        &=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
        &=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
        &=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
        &=2mathrm{G}tag{11}
        end{align}
        $$






        share|cite|improve this answer











        $endgroup$



        Answer Without Legendre Polynomials and Elliptic Integrals



        Using the integral
        $$
        frac1piint_0^1frac{x^n,mathrm{d}x}{sqrt{x(1-x)}}=frac{binom{2n}{n}}{4^n}tag1
        $$

        and the sum
        $$
        sum_{n=0}^inftyfrac{binom{2n}{n}}{4^n}r^n=frac1{sqrt{1-r}}tag2
        $$

        we get
        $$
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}r^k
        =frac1piint_0^1frac{mathrm{d}x}{sqrt{1-rx}sqrt{x(1-x)}}tag3
        $$

        Substituting $rmapsto r^2$ in $(3)$ and integrating in $r$, we get
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k+1}}{2k+1}
        &=frac1piint_0^1frac{arcsinleft(rsqrt{x}right),mathrm{d}x}{xsqrt{1-x}}\
        &=frac2piint_0^1frac{arcsin(rx),mathrm{d}x}{xsqrt{1-x^2}}tag4
        end{align}
        $$

        Plugging in $r=1$, and using the result from $(11)$, yields
        $$
        begin{align}
        color{#C00}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k+1}}
        &=frac2piint_0^1frac{arcsin(x),mathrm{d}x}{xsqrt{1-x^2}}\
        &=frac2piint_0^{pi/2}frac{x}{sin(x)},mathrm{d}x\[6pt]
        &=color{#C00}{frac{4mathrm{G}}pi}tag5
        end{align}
        $$

        where $mathrm{G}$ is Catalan's Constant.



        Substituting $rmapsto r^2$ in $(3)$, dividing by $r^2$, and integrating in $r$, we get
        $$
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{2k-1}
        =frac1{pi r}int_0^1frac{-sqrt{1-r^2x},mathrm{d}x}{sqrt{x(1-x)}}tag6
        $$

        Plugging in $r=1$ yields
        $$
        begin{align}
        color{#090}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{2k-1}}
        &=frac1piint_0^1frac{-1,mathrm{d}x}{sqrt{x}}\
        &=color{#090}{-frac2pi}tag7
        end{align}
        $$

        Dividing $(6)$ by $r$, and integrating in $r$, we get
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac{r^{2k-1}}{(2k-1)^2}
        &=frac1{pi r}int_0^1frac{left(rsqrt{x}arcsinleft(rsqrt{x}right)+sqrt{1-r^2x}right),mathrm{d}x}{sqrt{x(1-x)}}\
        &=frac2{pi r}int_0^1frac{left(rxarcsin(rx)+sqrt{1-r^2x^2}right),mathrm{d}x}{sqrt{1-x^2}}tag8
        end{align}
        $$

        Plugging in $r=1$ yields
        $$
        begin{align}
        color{#00F}{sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}frac1{(2k-1)^2}}
        &=frac2piint_0^1frac{left(xarcsin(x)+sqrt{1-x^2}right),mathrm{d}x}{sqrt{1-x^2}}\
        &=frac2pileft(int_0^{pi/2}xsin(x),mathrm{d}x+1right)\[6pt]
        &=color{#00F}{frac4pi}tag9
        end{align}
        $$

        Therefore,
        $$
        begin{align}
        sum_{k=0}^inftyfrac{binom{2k}{k}^2}{2^{4k+1}} frac{k(6k-1)}{(2k-1)^2(2k+1)}
        &=frac12sum_{k=0}^inftyfrac{binom{2k}{k}^2}{16^k}left(color{#C00}{frac{1/2}{2k+1}}color{#090}{+frac1{2k-1}}color{#00F}{+frac{1/2}{(2k-1)^2}}right)\
        &=frac12left(color{#C00}{frac{2mathrm{G}}pi}color{#090}{-frac2pi}color{#00F}{+frac2pi}right)\
        &=bbox[5px,border:2px solid #C0A000]{frac{mathrm{G}}pi}tag{10}
        end{align}
        $$





        Result used in $boldsymbol{(5)}$:
        $$
        begin{align}
        int_0^{pi/2}frac{x}{sin(x)},mathrm{d}x
        &=2iint_0^{pi/2}xsum_{k=0}^infty e^{-i(2k+1)x},mathrm{d}x\
        &=sum_{k=0}^inftyfrac{-2}{2k+1}int_0^{pi/2}x,mathrm{d}e^{-i(2k+1)x}\
        &=sum_{k=0}^inftyfrac{-2}{2k+1}left(fracpi2(-i)(-1)^k-int_0^{pi/2}e^{-i(2k+1)x},mathrm{d}xright)\
        &=ifrac{pi^2}4+sum_{k=0}^inftyfrac{2i}{(2k+1)^2}left((-i)(-1)^k-1right)\
        &=ifrac{pi^2}4+2sum_{k=0}^inftyfrac{(-1)^k}{(2k+1)^2}-ifrac{pi^2}4\[6pt]
        &=2mathrm{G}tag{11}
        end{align}
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 22 at 22:21

























        answered Dec 30 '18 at 20:38









        robjohnrobjohn

        270k27311639




        270k27311639























            15












            $begingroup$

            Fourier-Legendre series provide a very simple derivation. We may recall that
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
            $$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
            hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals



            $$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
            $$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
            All of them are straightforward, since
            $$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
            $$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
            $$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
            hence
            $$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$



            This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Jack, your work and contribution to this site are truly remarkable.
              $endgroup$
              – Klangen
              Dec 30 '18 at 21:57










            • $begingroup$
              @Klangen: I'm flattered :)
              $endgroup$
              – Jack D'Aurizio
              Dec 30 '18 at 22:46
















            15












            $begingroup$

            Fourier-Legendre series provide a very simple derivation. We may recall that
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
            $$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
            hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals



            $$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
            $$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
            All of them are straightforward, since
            $$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
            $$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
            $$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
            hence
            $$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$



            This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Jack, your work and contribution to this site are truly remarkable.
              $endgroup$
              – Klangen
              Dec 30 '18 at 21:57










            • $begingroup$
              @Klangen: I'm flattered :)
              $endgroup$
              – Jack D'Aurizio
              Dec 30 '18 at 22:46














            15












            15








            15





            $begingroup$

            Fourier-Legendre series provide a very simple derivation. We may recall that
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
            $$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
            hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals



            $$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
            $$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
            All of them are straightforward, since
            $$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
            $$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
            $$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
            hence
            $$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$



            This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.






            share|cite|improve this answer











            $endgroup$



            Fourier-Legendre series provide a very simple derivation. We may recall that
            $$ K(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 x^n $$
            $$ E(x)=frac{pi}{2}sum_{ngeq 0}left[frac{1}{4^n}binom{2n}{n}right]^2 frac{x^n}{1-2n} $$
            hence, by partial fraction decomposition and reindexing, the computation of the given series boils down to the computation of the integrals



            $$ I_1 = int_{0}^{1}K(x^2),dx = frac{1}{2}int_{0}^{1}frac{K(x)}{sqrt{x}},dx $$
            $$ I_2 = int_{0}^{1}E(x),dx qquad I_3=int_{0}^{1}K(x),dx.$$
            All of them are straightforward, since
            $$ K(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{2}{2n+1}P_n(2x-1) $$
            $$ E(x)stackrel{L^2(0,1)}{=}sum_{ngeq 0}frac{4}{(1-2n)(2n+1)(2n+3)}P_n(2x-1) $$
            $$ frac{1}{sqrt{x}}stackrel{L^2(0,1)}{=}sum_{ngeq 0} 2(-1)^n P_n(2x-1)$$
            hence
            $$ I_1 = 2C,qquad I_2 = frac{4}{3},qquad I_3 = 2.$$



            This technique has been extensively used in our (Campbell's, Sondow's and mine) joint work here.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 29 '18 at 22:20

























            answered Dec 29 '18 at 22:14









            Jack D'AurizioJack D'Aurizio

            292k33284669




            292k33284669








            • 1




              $begingroup$
              Jack, your work and contribution to this site are truly remarkable.
              $endgroup$
              – Klangen
              Dec 30 '18 at 21:57










            • $begingroup$
              @Klangen: I'm flattered :)
              $endgroup$
              – Jack D'Aurizio
              Dec 30 '18 at 22:46














            • 1




              $begingroup$
              Jack, your work and contribution to this site are truly remarkable.
              $endgroup$
              – Klangen
              Dec 30 '18 at 21:57










            • $begingroup$
              @Klangen: I'm flattered :)
              $endgroup$
              – Jack D'Aurizio
              Dec 30 '18 at 22:46








            1




            1




            $begingroup$
            Jack, your work and contribution to this site are truly remarkable.
            $endgroup$
            – Klangen
            Dec 30 '18 at 21:57




            $begingroup$
            Jack, your work and contribution to this site are truly remarkable.
            $endgroup$
            – Klangen
            Dec 30 '18 at 21:57












            $begingroup$
            @Klangen: I'm flattered :)
            $endgroup$
            – Jack D'Aurizio
            Dec 30 '18 at 22:46




            $begingroup$
            @Klangen: I'm flattered :)
            $endgroup$
            – Jack D'Aurizio
            Dec 30 '18 at 22:46


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056291%2fconjecture-sum-limits-n-0-infty2n-choose-n22-4n-fracn6n-12n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen