How to define this application g to meet $Im space g subseteq T$?
$begingroup$
Let $S$ be the subspace of matrix 2x2 in $mathbb R$ formed by symetrical matrix and $T$ the one formed by the matrix of trace zero.
Let $A=left(begin{array}{cc} 1 & 0\ 2 & 0 end{array}right)$ and $f:Srightarrow T$ linear given by $f(M)=AM-MA.$
So the first question is to get $mathcal B_1$ and $mathcal B_2$ basis os $S$ and $T$ so the matrix of $f$ is $A=left(begin{array}{cc} I_r & 0\ 0 & 0 end{array}right)$.
So I ended up with:
$mathcal B_1$ :$left(begin{array}{cc} 0& 0\ 1 & 0 end{array}right)$$left(begin{array}{cc} 0 & 1\ 0 & 0 end{array}right)$$left(begin{array}{cc} 1 & 0\ 0 & 1 end{array}right)$.
$mathcal B_2$ : $left(begin{array}{cc} 0& 0\ -1 & 0 end{array}right)$$left(begin{array}{cc} -2 & 1\ 0 & 2 end{array}right)$$left(begin{array}{cc} 1 & 0\ 1 & 0 end{array}right)$
then the matrix of $f$ is: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\0&0&0end{array}right)$.
But now they ask me to find the applications $g:Srightarrow S$ with $fcirc g=f$ and express their matrix respect $mathcal B_1$(g is linear).
So here I got that those g are the ones with matrix: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\a&b&cend{array}right)$ .
With $a,b,cin mathbb R$.
But I don't know how to start with the next question.
Of all those g, find the ONLY ONE that meets $Imspace g subseteq T$.
How to start? Any hint?
linear-algebra algebra-precalculus
$endgroup$
add a comment |
$begingroup$
Let $S$ be the subspace of matrix 2x2 in $mathbb R$ formed by symetrical matrix and $T$ the one formed by the matrix of trace zero.
Let $A=left(begin{array}{cc} 1 & 0\ 2 & 0 end{array}right)$ and $f:Srightarrow T$ linear given by $f(M)=AM-MA.$
So the first question is to get $mathcal B_1$ and $mathcal B_2$ basis os $S$ and $T$ so the matrix of $f$ is $A=left(begin{array}{cc} I_r & 0\ 0 & 0 end{array}right)$.
So I ended up with:
$mathcal B_1$ :$left(begin{array}{cc} 0& 0\ 1 & 0 end{array}right)$$left(begin{array}{cc} 0 & 1\ 0 & 0 end{array}right)$$left(begin{array}{cc} 1 & 0\ 0 & 1 end{array}right)$.
$mathcal B_2$ : $left(begin{array}{cc} 0& 0\ -1 & 0 end{array}right)$$left(begin{array}{cc} -2 & 1\ 0 & 2 end{array}right)$$left(begin{array}{cc} 1 & 0\ 1 & 0 end{array}right)$
then the matrix of $f$ is: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\0&0&0end{array}right)$.
But now they ask me to find the applications $g:Srightarrow S$ with $fcirc g=f$ and express their matrix respect $mathcal B_1$(g is linear).
So here I got that those g are the ones with matrix: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\a&b&cend{array}right)$ .
With $a,b,cin mathbb R$.
But I don't know how to start with the next question.
Of all those g, find the ONLY ONE that meets $Imspace g subseteq T$.
How to start? Any hint?
linear-algebra algebra-precalculus
$endgroup$
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39
add a comment |
$begingroup$
Let $S$ be the subspace of matrix 2x2 in $mathbb R$ formed by symetrical matrix and $T$ the one formed by the matrix of trace zero.
Let $A=left(begin{array}{cc} 1 & 0\ 2 & 0 end{array}right)$ and $f:Srightarrow T$ linear given by $f(M)=AM-MA.$
So the first question is to get $mathcal B_1$ and $mathcal B_2$ basis os $S$ and $T$ so the matrix of $f$ is $A=left(begin{array}{cc} I_r & 0\ 0 & 0 end{array}right)$.
So I ended up with:
$mathcal B_1$ :$left(begin{array}{cc} 0& 0\ 1 & 0 end{array}right)$$left(begin{array}{cc} 0 & 1\ 0 & 0 end{array}right)$$left(begin{array}{cc} 1 & 0\ 0 & 1 end{array}right)$.
$mathcal B_2$ : $left(begin{array}{cc} 0& 0\ -1 & 0 end{array}right)$$left(begin{array}{cc} -2 & 1\ 0 & 2 end{array}right)$$left(begin{array}{cc} 1 & 0\ 1 & 0 end{array}right)$
then the matrix of $f$ is: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\0&0&0end{array}right)$.
But now they ask me to find the applications $g:Srightarrow S$ with $fcirc g=f$ and express their matrix respect $mathcal B_1$(g is linear).
So here I got that those g are the ones with matrix: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\a&b&cend{array}right)$ .
With $a,b,cin mathbb R$.
But I don't know how to start with the next question.
Of all those g, find the ONLY ONE that meets $Imspace g subseteq T$.
How to start? Any hint?
linear-algebra algebra-precalculus
$endgroup$
Let $S$ be the subspace of matrix 2x2 in $mathbb R$ formed by symetrical matrix and $T$ the one formed by the matrix of trace zero.
Let $A=left(begin{array}{cc} 1 & 0\ 2 & 0 end{array}right)$ and $f:Srightarrow T$ linear given by $f(M)=AM-MA.$
So the first question is to get $mathcal B_1$ and $mathcal B_2$ basis os $S$ and $T$ so the matrix of $f$ is $A=left(begin{array}{cc} I_r & 0\ 0 & 0 end{array}right)$.
So I ended up with:
$mathcal B_1$ :$left(begin{array}{cc} 0& 0\ 1 & 0 end{array}right)$$left(begin{array}{cc} 0 & 1\ 0 & 0 end{array}right)$$left(begin{array}{cc} 1 & 0\ 0 & 1 end{array}right)$.
$mathcal B_2$ : $left(begin{array}{cc} 0& 0\ -1 & 0 end{array}right)$$left(begin{array}{cc} -2 & 1\ 0 & 2 end{array}right)$$left(begin{array}{cc} 1 & 0\ 1 & 0 end{array}right)$
then the matrix of $f$ is: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\0&0&0end{array}right)$.
But now they ask me to find the applications $g:Srightarrow S$ with $fcirc g=f$ and express their matrix respect $mathcal B_1$(g is linear).
So here I got that those g are the ones with matrix: $left(begin{array}{cc} 1 & 0 & 0\ 0 & 1 &0\a&b&cend{array}right)$ .
With $a,b,cin mathbb R$.
But I don't know how to start with the next question.
Of all those g, find the ONLY ONE that meets $Imspace g subseteq T$.
How to start? Any hint?
linear-algebra algebra-precalculus
linear-algebra algebra-precalculus
edited Dec 31 '18 at 10:10
iggykimi
asked Dec 31 '18 at 0:33
iggykimiiggykimi
31210
31210
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39
add a comment |
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hints:
- note that $Scap T = langleleft(begin{matrix}0 & 1 \ 1 & 0 end{matrix}right) rangle$
- $fleft(begin{matrix}m_{11} & m_{12} \ m_{21}& m_{22} end{matrix}right)=left(begin{matrix} 0 & -m_{12} \ -m_{21}& 0 end{matrix}right)$
$endgroup$
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057319%2fhow-to-define-this-application-g-to-meet-im-space-g-subseteq-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hints:
- note that $Scap T = langleleft(begin{matrix}0 & 1 \ 1 & 0 end{matrix}right) rangle$
- $fleft(begin{matrix}m_{11} & m_{12} \ m_{21}& m_{22} end{matrix}right)=left(begin{matrix} 0 & -m_{12} \ -m_{21}& 0 end{matrix}right)$
$endgroup$
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
add a comment |
$begingroup$
Hints:
- note that $Scap T = langleleft(begin{matrix}0 & 1 \ 1 & 0 end{matrix}right) rangle$
- $fleft(begin{matrix}m_{11} & m_{12} \ m_{21}& m_{22} end{matrix}right)=left(begin{matrix} 0 & -m_{12} \ -m_{21}& 0 end{matrix}right)$
$endgroup$
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
add a comment |
$begingroup$
Hints:
- note that $Scap T = langleleft(begin{matrix}0 & 1 \ 1 & 0 end{matrix}right) rangle$
- $fleft(begin{matrix}m_{11} & m_{12} \ m_{21}& m_{22} end{matrix}right)=left(begin{matrix} 0 & -m_{12} \ -m_{21}& 0 end{matrix}right)$
$endgroup$
Hints:
- note that $Scap T = langleleft(begin{matrix}0 & 1 \ 1 & 0 end{matrix}right) rangle$
- $fleft(begin{matrix}m_{11} & m_{12} \ m_{21}& m_{22} end{matrix}right)=left(begin{matrix} 0 & -m_{12} \ -m_{21}& 0 end{matrix}right)$
answered Dec 31 '18 at 0:40
Martín Vacas VignoloMartín Vacas Vignolo
3,816623
3,816623
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
add a comment |
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
$begingroup$
still don't know how to follow :(
$endgroup$
– iggykimi
Dec 31 '18 at 14:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057319%2fhow-to-define-this-application-g-to-meet-im-space-g-subseteq-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
How are the members of your $mathcal B_i$ elements of $S$ or $T$?
$endgroup$
– Berci
Dec 31 '18 at 0:39