Determinant of matrix formed from blocks of a $2 times 2$ block partitioned symplectic matrix.












5












$begingroup$


While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :



$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$



where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,



$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$



with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.



$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
    $endgroup$
    – i9Fn
    Dec 27 '18 at 17:13










  • $begingroup$
    @i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
    $endgroup$
    – Sunyam
    Dec 27 '18 at 17:20
















5












$begingroup$


While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :



$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$



where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,



$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$



with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.



$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
    $endgroup$
    – i9Fn
    Dec 27 '18 at 17:13










  • $begingroup$
    @i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
    $endgroup$
    – Sunyam
    Dec 27 '18 at 17:20














5












5








5





$begingroup$


While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :



$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$



where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,



$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$



with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.



$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)










share|cite|improve this question











$endgroup$




While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :



$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$



where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,



$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$



with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.



$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)







linear-algebra matrices symmetric-matrices symplectic-linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 27 '18 at 19:59







Sunyam

















asked Sep 27 '18 at 18:42









SunyamSunyam

166214




166214












  • $begingroup$
    Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
    $endgroup$
    – i9Fn
    Dec 27 '18 at 17:13










  • $begingroup$
    @i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
    $endgroup$
    – Sunyam
    Dec 27 '18 at 17:20


















  • $begingroup$
    Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
    $endgroup$
    – i9Fn
    Dec 27 '18 at 17:13










  • $begingroup$
    @i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
    $endgroup$
    – Sunyam
    Dec 27 '18 at 17:20
















$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13




$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13












$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20




$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933451%2fdeterminant-of-matrix-formed-from-blocks-of-a-2-times-2-block-partitioned-sym%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933451%2fdeterminant-of-matrix-formed-from-blocks-of-a-2-times-2-block-partitioned-sym%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen