How to prove $int_0^infty ln(1+frac{z}{cosh(x)})dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$ and a closed...
$begingroup$
I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$
Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.
Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$
calculus definite-integrals improper-integrals closed-form
$endgroup$
add a comment |
$begingroup$
I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$
Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.
Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$
calculus definite-integrals improper-integrals closed-form
$endgroup$
add a comment |
$begingroup$
I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$
Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.
Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$
calculus definite-integrals improper-integrals closed-form
$endgroup$
I observed graphically that $$f(z)=int_0^infty lnleft(1+frac{z}{cosh(x)}right)dx=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},zge1$$
Can anyone explain why this holds? I tried differentiating with respect to $z$ but I didn't really know how to continue further.
Also, if anyone knows how to obtain a closed form of $f(z)$ for $-1<z<1$ it would be greatly appreciated as I'm curious about specific values such as $f(-frac{1}{2})=-frac{7pi^2}{72}$ and $f(frac{1}{2})=frac{5pi^2}{72}.$
calculus definite-integrals improper-integrals closed-form
calculus definite-integrals improper-integrals closed-form
edited Dec 22 '18 at 1:00
Kemono Chen
3,1841844
3,1841844
asked Dec 22 '18 at 0:13
aledenaleden
2,409511
2,409511
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
$$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
Recall $cosh x=frac12(e^x+e^{-x})$,
$$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
=int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
=int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
=-4frac{arctan w}{1+w^2}$$
$$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
=int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
=frac{pi^2}8-2arctan^2w$$
Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.
$endgroup$
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
add a comment |
$begingroup$
Here is a more direct way.
The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.
From
$$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
on differentiating with respect to $z$ we have
begin{align}
f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
&= int_0^infty frac{dx}{cosh x + z}\
&= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
end{align}
In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.
Making a substitution of $u = e^x, du = e^x , dx$ leads to
$$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$
Case 1: $-1 < z < 1$
For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
&= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
&= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
end{align}
where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.
Noting that
$$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
the result in ($**$) can be rewritten as
$$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
$$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$
Case 2: $z > 1$
For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
&= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
&= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
&= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
end{align}
where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.
Noting that
$$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
the result in ($***$) can be written as
$$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
$$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$
$endgroup$
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
add a comment |
$begingroup$
First,
$$
begin{align}
int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
&=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
&=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
&=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
&=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
&=left{begin{array}{}
frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: substitute $z=tan(theta/2)$
$(2)$: partial fractions
$(3)$: integrate
$(4)$: evaluate
$(5)$: simplify in different cases
Therefore,
$$
begin{align}
int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
&=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
&=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
&=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
&=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
&=left{begin{array}{}
frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
end{array}right.tag{10}
end{align}
$$
Explanation:
$phantom{1}(6)$: substitute $u=e^x$
$phantom{1}(7)$: substitute $umapsto1/u$
$phantom{1}(8)$: substitute $u=tan(theta)$
$phantom{1}(9)$: substitute $thetamapstotheta/2$
$(10)$: apply the integral of $(5)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049024%2fhow-to-prove-int-0-infty-ln1-fracz-coshxdx-frac-pi28-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
$$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
Recall $cosh x=frac12(e^x+e^{-x})$,
$$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
=int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
=int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
=-4frac{arctan w}{1+w^2}$$
$$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
=int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
=frac{pi^2}8-2arctan^2w$$
Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.
$endgroup$
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
add a comment |
$begingroup$
Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
$$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
Recall $cosh x=frac12(e^x+e^{-x})$,
$$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
=int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
=int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
=-4frac{arctan w}{1+w^2}$$
$$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
=int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
=frac{pi^2}8-2arctan^2w$$
Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.
$endgroup$
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
add a comment |
$begingroup$
Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
$$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
Recall $cosh x=frac12(e^x+e^{-x})$,
$$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
=int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
=int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
=-4frac{arctan w}{1+w^2}$$
$$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
=int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
=frac{pi^2}8-2arctan^2w$$
Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.
$endgroup$
Substitute $z=frac{1-w^2}{1+w^2}$, the original integral turns into
$$I(w)=int_0^inftylnleft(1+frac{1-w^2}{1+w^2}operatorname{sech} xright)dx.$$
Use Feymann's trick, $$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2cosh x}dx$$
Recall $cosh x=frac12(e^x+e^{-x})$,
$$I'(w)=int_0^inftyfrac{-4w}{1-w^4+(1+w^2)^2frac12(e^x+e^{-x})}dx\
=int_0^inftyfrac{-4we^x}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}dx\
=int_0^inftyfrac{-4w}{(1-w^4)e^x+(1+w^2)^2frac12(e^{2x}+1)}de^x\
=-4frac{arctan w}{1+w^2}$$
$$I(w)=I(0)+int_0^w -4frac{arctan l}{1+l^2}dl\
=int_0^inftyln(1+operatorname{sech}(x))dx-2arctan^2w\
=frac{pi^2}8-2arctan^2w$$
Now, solve $z=frac{1-w^2}{1+w^2}$ w.r.t. $w$ and use $-2arctan^2sqrt{frac{1-z}{1+z}}=frac12operatorname{arccosh}^2 z$, we get $$f(z)=frac{pi^2}{8}+frac{(cosh^{-1}(z))^2}{2},z>-1.$$
The formula is valid when $zin[-1,1]$ if we consider $cosh^{-1}$ as a complex-valued function. If you don't like this representation, just deduce $f(z)=frac{pi^2}{8}-frac{(arccos(z))^2}{2}$ using some algebra.
edited Dec 22 '18 at 0:52
answered Dec 22 '18 at 0:47
Kemono ChenKemono Chen
3,1841844
3,1841844
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
add a comment |
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
What made you think to substitute $$z=frac {1-w^2}{1+w^2}$$as opposed to something like$$z=frac {1-w}{1+w}$$
$endgroup$
– Frank W.
Dec 23 '18 at 4:45
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
$begingroup$
@Frank First, I applied Feymann's trick directly, but I can't continue. In order to make the inside of arctangent beautiful, I solved the equation and hence substituted $z$.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:26
add a comment |
$begingroup$
Here is a more direct way.
The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.
From
$$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
on differentiating with respect to $z$ we have
begin{align}
f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
&= int_0^infty frac{dx}{cosh x + z}\
&= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
end{align}
In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.
Making a substitution of $u = e^x, du = e^x , dx$ leads to
$$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$
Case 1: $-1 < z < 1$
For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
&= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
&= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
end{align}
where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.
Noting that
$$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
the result in ($**$) can be rewritten as
$$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
$$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$
Case 2: $z > 1$
For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
&= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
&= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
&= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
end{align}
where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.
Noting that
$$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
the result in ($***$) can be written as
$$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
$$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$
$endgroup$
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
add a comment |
$begingroup$
Here is a more direct way.
The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.
From
$$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
on differentiating with respect to $z$ we have
begin{align}
f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
&= int_0^infty frac{dx}{cosh x + z}\
&= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
end{align}
In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.
Making a substitution of $u = e^x, du = e^x , dx$ leads to
$$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$
Case 1: $-1 < z < 1$
For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
&= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
&= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
end{align}
where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.
Noting that
$$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
the result in ($**$) can be rewritten as
$$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
$$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$
Case 2: $z > 1$
For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
&= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
&= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
&= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
end{align}
where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.
Noting that
$$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
the result in ($***$) can be written as
$$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
$$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$
$endgroup$
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
add a comment |
$begingroup$
Here is a more direct way.
The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.
From
$$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
on differentiating with respect to $z$ we have
begin{align}
f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
&= int_0^infty frac{dx}{cosh x + z}\
&= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
end{align}
In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.
Making a substitution of $u = e^x, du = e^x , dx$ leads to
$$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$
Case 1: $-1 < z < 1$
For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
&= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
&= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
end{align}
where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.
Noting that
$$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
the result in ($**$) can be rewritten as
$$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
$$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$
Case 2: $z > 1$
For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
&= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
&= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
&= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
end{align}
where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.
Noting that
$$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
the result in ($***$) can be written as
$$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
$$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$
$endgroup$
Here is a more direct way.
The first thing to note is the function $f(z)$ is continuous for all $z > - 1$, including at the point $z = 1$.
From
$$f(z) = int_0^infty ln (1 + z operatorname{sech} x) , dx,$$
on differentiating with respect to $z$ we have
begin{align}
f'(z) &= int_0^infty frac{operatorname{sech} x}{1 + z operatorname{sech}} , dx\
&= int_0^infty frac{dx}{cosh x + z}\
&= 2 int_0^infty frac{e^x}{e^{2x} + 2z e^x + 1} , dx.
end{align}
In the last line we have used the fact that $cosh x = (e^{x} + e^{-x})/2$.
Making a substitution of $u = e^x, du = e^x , dx$ leads to
$$f'(z) = 2 int_1^infty frac{du}{(u + z)^2 + 1 - z^2}. qquad (*)$$
Case 1: $-1 < z < 1$
For this case, as the term $(1 - z^2)$ will be positive we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 + (sqrt{1 - z^2})^2}\
&= frac{2}{sqrt{1 - z^2}} left [tan^{-1} left (frac{u + z}{sqrt{1 - z^2}} right ) right ]_1^infty\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{1 + z}{sqrt{1 - z^2}} right )\
&= frac{pi}{sqrt{1 - z^2}} - frac{2}{sqrt{1 - z^2}} left [frac{pi}{2} - tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ) right ]\
&= frac{2}{sqrt{1 - z^2}} tan^{-1} left (frac{sqrt{1 - z^2}}{1 + z} right ), qquad (**)
end{align}
where we have made use of the result $tan^{-1} (x) = pi/2 - tan^{-1} (1/x)$ for $x > 0$.
Noting that
$$tan left (frac{1}{2} cos^{-1} z right ) = frac{sqrt{1 - z^2}}{1 + z},$$
the result in ($**$) can be rewritten as
$$f'(z) = frac{1}{sqrt{1 - z^2}} cos^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cos^{-1} z}{sqrt{1 - z^2}} , dz = -frac{1}{2} (cos^{-1} z )^2 + C.$$
To find the constant $C$, choosing $z= 0$ we see that $f(0) = 0$. Thus $C = pi^2/8$, leading to
$$f (z) = frac{pi^2}{8} - frac{1}{2} (cos^{-1} z)^2, , -1 < z < 1. qquad (dagger)$$
Case 2: $z > 1$
For this case, as the term $(1 - z^2)$ will be negative we can write ($*$) as:
begin{align}
f'(z) &= 2 int_1^infty frac{du}{(u + z)^2 - (sqrt{z^2 - 1})^2}\
&= -frac{2}{sqrt{z^2 - 1}} left [coth^{-1} left (frac{u + z}{sqrt{z^2 - 1}} right ) right ]_1^infty\
&= frac{2}{sqrt{z^2 - 1}} coth^{-1} left (frac{1 + z}{sqrt{z^2 - 1}} right )\
&= frac{2}{sqrt{z^2 - 1}} tanh^{-1} left (frac{sqrt{z^2 - 1}}{z+ 1} right ), qquad (***)
end{align}
where we have made use of the result $coth^{-1} (x) = tanh^{-1} (1/x), x neq 0$.
Noting that
$$tanh left (frac{1}{2} cosh^{-1} z right ) = frac{sqrt{z^2 - 1}}{z + 1},$$
the result in ($***$) can be written as
$$f'(z) = frac{1}{sqrt{z^2 - 1}} cosh^{-1} z.$$
Integrating up with respect to $z$ it is readily seen that
$$f(z) = int frac{cosh^{-1} z}{sqrt{z^2 - 1}} , dz = frac{1}{2} (cosh^{-1} z)^2 + C.$$
To find the unknown constant $C$, as the function $f(z)$ is continuous for all $z > - 1$, for $f$ to be continuous at $z = 1$, from ($dagger$) we require $f(1) = pi^2/8$. Thus $C = pi^2/8$, leading to
$$f(z) = frac{pi^2}{8} + frac{1}{2} (cosh^{-1} z)^2, qquad z > 1.$$
answered Dec 23 '18 at 4:41
omegadotomegadot
6,3122828
6,3122828
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
add a comment |
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
$begingroup$
(+1) because this solution is more directly than that of mine.
$endgroup$
– Kemono Chen
Dec 23 '18 at 5:32
add a comment |
$begingroup$
First,
$$
begin{align}
int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
&=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
&=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
&=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
&=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
&=left{begin{array}{}
frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: substitute $z=tan(theta/2)$
$(2)$: partial fractions
$(3)$: integrate
$(4)$: evaluate
$(5)$: simplify in different cases
Therefore,
$$
begin{align}
int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
&=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
&=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
&=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
&=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
&=left{begin{array}{}
frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
end{array}right.tag{10}
end{align}
$$
Explanation:
$phantom{1}(6)$: substitute $u=e^x$
$phantom{1}(7)$: substitute $umapsto1/u$
$phantom{1}(8)$: substitute $u=tan(theta)$
$phantom{1}(9)$: substitute $thetamapstotheta/2$
$(10)$: apply the integral of $(5)$
$endgroup$
add a comment |
$begingroup$
First,
$$
begin{align}
int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
&=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
&=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
&=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
&=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
&=left{begin{array}{}
frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: substitute $z=tan(theta/2)$
$(2)$: partial fractions
$(3)$: integrate
$(4)$: evaluate
$(5)$: simplify in different cases
Therefore,
$$
begin{align}
int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
&=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
&=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
&=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
&=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
&=left{begin{array}{}
frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
end{array}right.tag{10}
end{align}
$$
Explanation:
$phantom{1}(6)$: substitute $u=e^x$
$phantom{1}(7)$: substitute $umapsto1/u$
$phantom{1}(8)$: substitute $u=tan(theta)$
$phantom{1}(9)$: substitute $thetamapstotheta/2$
$(10)$: apply the integral of $(5)$
$endgroup$
add a comment |
$begingroup$
First,
$$
begin{align}
int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
&=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
&=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
&=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
&=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
&=left{begin{array}{}
frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: substitute $z=tan(theta/2)$
$(2)$: partial fractions
$(3)$: integrate
$(4)$: evaluate
$(5)$: simplify in different cases
Therefore,
$$
begin{align}
int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
&=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
&=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
&=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
&=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
&=left{begin{array}{}
frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
end{array}right.tag{10}
end{align}
$$
Explanation:
$phantom{1}(6)$: substitute $u=e^x$
$phantom{1}(7)$: substitute $umapsto1/u$
$phantom{1}(8)$: substitute $u=tan(theta)$
$phantom{1}(9)$: substitute $thetamapstotheta/2$
$(10)$: apply the integral of $(5)$
$endgroup$
First,
$$
begin{align}
int_0^{pi/2}frac{mathrm{d}theta}{1+alphasin(theta)}
&=int_0^1frac{2,mathrm{d}z}{1+2alpha z+z^2}tag1\
&=frac1{sqrt{alpha^2-1}}int_0^1left(frac1{z+alpha-sqrt{alpha^2-1}}-frac1{z+alpha+sqrt{alpha^2-1}}right)mathrm{d}ztag2\
&=frac1{sqrt{alpha^2-1}}left[logleft(frac{z+alpha-sqrt{alpha^2-1}}{z+alpha+sqrt{alpha^2-1}}right)right]_0^1tag3\
&=frac1{sqrt{alpha^2-1}}logleft(alpha+sqrt{alpha^2-1}right)tag4\
&=left{begin{array}{}
frac1{sqrt{1-alpha^2}}cos^{-1}(alpha)&text{if }|alpha|le1\
frac1{sqrt{alpha^2-1}}cosh^{-1}(alpha)&text{if }alphage1
end{array}right.tag5
end{align}
$$
Explanation:
$(1)$: substitute $z=tan(theta/2)$
$(2)$: partial fractions
$(3)$: integrate
$(4)$: evaluate
$(5)$: simplify in different cases
Therefore,
$$
begin{align}
int_0^inftylogleft(1+frac{alpha}{cosh(x)}right),mathrm{d}x
&=int_1^inftylogleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag6\
&=int_0^1logleft(1+frac{2alpha}{u+frac1u}right)frac{mathrm{d}u}utag7\
&=int_0^{pi/4}logleft(1+alphasin(2theta)right)frac{2,mathrm{d}theta}{sin(2theta)}tag8\
&=int_0^{pi/2}logleft(1+alphasin(theta)right)frac{mathrm{d}theta}{sin(theta)}tag9\
&=left{begin{array}{}
frac{pi^2}8-frac12cos^{-1}(alpha)^2&text{if }|alpha|le1\
frac{pi^2}8+frac12cosh^{-1}(alpha)^2&text{if }alphage1
end{array}right.tag{10}
end{align}
$$
Explanation:
$phantom{1}(6)$: substitute $u=e^x$
$phantom{1}(7)$: substitute $umapsto1/u$
$phantom{1}(8)$: substitute $u=tan(theta)$
$phantom{1}(9)$: substitute $thetamapstotheta/2$
$(10)$: apply the integral of $(5)$
answered Dec 23 '18 at 12:25
robjohn♦robjohn
268k27308634
268k27308634
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049024%2fhow-to-prove-int-0-infty-ln1-fracz-coshxdx-frac-pi28-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown