Find the interval of convergence of the series $ sum^{infty}limits_{k=0} ((-1)^k+3)^k(x-1)^k $
$begingroup$
I wish to find the interval of convergence of the following series
begin{align} sum^{infty}_{k=0} ((-1)^k+3)^k(x-1)^k end{align}
PROOF
Wittingly,
begin{align} left[(-1)^k+3right]^k= begin{cases} 0,&text{if};j=0;\4^j,&text{if};j=2k;\2^j,&text{if};j=2k+1.end{cases} end{align}
Thus,
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}&=|x-1|limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}\&=|x-1|limsup_{ktoinfty} 2^{(2k+1)times frac{1}{k}} \&=4|x-1| end{align}
The series converges absolutely when $limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}<1,$ i.e.,
begin{align} |x-1|< dfrac{1}{4}iff dfrac{3}{4}<x<dfrac{5}{4} end{align}
QUESTION:
Why must begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 2^{2k+1}(x-1)^kright|}end{align}
as stated in the book before me and not
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 4^{2k}(x-1)^kright|};?end{align}
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
I wish to find the interval of convergence of the following series
begin{align} sum^{infty}_{k=0} ((-1)^k+3)^k(x-1)^k end{align}
PROOF
Wittingly,
begin{align} left[(-1)^k+3right]^k= begin{cases} 0,&text{if};j=0;\4^j,&text{if};j=2k;\2^j,&text{if};j=2k+1.end{cases} end{align}
Thus,
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}&=|x-1|limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}\&=|x-1|limsup_{ktoinfty} 2^{(2k+1)times frac{1}{k}} \&=4|x-1| end{align}
The series converges absolutely when $limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}<1,$ i.e.,
begin{align} |x-1|< dfrac{1}{4}iff dfrac{3}{4}<x<dfrac{5}{4} end{align}
QUESTION:
Why must begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 2^{2k+1}(x-1)^kright|}end{align}
as stated in the book before me and not
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 4^{2k}(x-1)^kright|};?end{align}
real-analysis sequences-and-series
$endgroup$
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40
add a comment |
$begingroup$
I wish to find the interval of convergence of the following series
begin{align} sum^{infty}_{k=0} ((-1)^k+3)^k(x-1)^k end{align}
PROOF
Wittingly,
begin{align} left[(-1)^k+3right]^k= begin{cases} 0,&text{if};j=0;\4^j,&text{if};j=2k;\2^j,&text{if};j=2k+1.end{cases} end{align}
Thus,
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}&=|x-1|limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}\&=|x-1|limsup_{ktoinfty} 2^{(2k+1)times frac{1}{k}} \&=4|x-1| end{align}
The series converges absolutely when $limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}<1,$ i.e.,
begin{align} |x-1|< dfrac{1}{4}iff dfrac{3}{4}<x<dfrac{5}{4} end{align}
QUESTION:
Why must begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 2^{2k+1}(x-1)^kright|}end{align}
as stated in the book before me and not
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 4^{2k}(x-1)^kright|};?end{align}
real-analysis sequences-and-series
$endgroup$
I wish to find the interval of convergence of the following series
begin{align} sum^{infty}_{k=0} ((-1)^k+3)^k(x-1)^k end{align}
PROOF
Wittingly,
begin{align} left[(-1)^k+3right]^k= begin{cases} 0,&text{if};j=0;\4^j,&text{if};j=2k;\2^j,&text{if};j=2k+1.end{cases} end{align}
Thus,
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}&=|x-1|limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}\&=|x-1|limsup_{ktoinfty} 2^{(2k+1)times frac{1}{k}} \&=4|x-1| end{align}
The series converges absolutely when $limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}<1,$ i.e.,
begin{align} |x-1|< dfrac{1}{4}iff dfrac{3}{4}<x<dfrac{5}{4} end{align}
QUESTION:
Why must begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 2^{2k+1}(x-1)^kright|}end{align}
as stated in the book before me and not
begin{align} limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}= limsup_{ktoinfty} sqrt[k]{left| 4^{2k}(x-1)^kright|};?end{align}
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Jan 1 at 12:25
Did
249k23226466
249k23226466
asked Jan 1 at 11:39
Omojola MichealOmojola Micheal
1,999424
1,999424
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40
add a comment |
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your justification of the equality$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$doesn't hold. You have $bigl((-1)^{2k+1}+3bigr)^{2k+1}=2^{2k+1}$. Therefore, what you should consider here is$$sqrt[2k+1]{2^{2k+1}}=2.$$But, since $bigl((-1)^{2k}+3bigr)^{2k}=4^{2k}$ and$$sqrt[2k]{4^{2k}}=4,$$you have$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=4lvert x-1rvert.$$
$endgroup$
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
|
show 3 more comments
$begingroup$
Hint
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k =lim_{nto infty}left(sum_{k=0}^n 4^{2k}(x-1)^{2k}+2(x-1)sum_{k=0}^n 2^{2k}(x-1)^{2k}right)
$$
and now
$$
sum_{k=0}^n 4^{2k}(x-1)^{2k} = frac{1-4^{2(n+1)}(x-1)^{2(n+1)} }{1-4^{2}(x-1)^{2}}
$$
which converges if $|4(x-1)| < 1$ etc. so the result is
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k=frac{2(x-1)}{1-2^2 (x-1)^2}+frac{1}{1-4^2 (x-1)^2}
$$
for $frac 34lt xlt frac 54$
Attached the plot showing in red the sum approximation for $n = 10$ and in black the asymptotic result found
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058414%2ffind-the-interval-of-convergence-of-the-series-sum-infty-limits-k-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your justification of the equality$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$doesn't hold. You have $bigl((-1)^{2k+1}+3bigr)^{2k+1}=2^{2k+1}$. Therefore, what you should consider here is$$sqrt[2k+1]{2^{2k+1}}=2.$$But, since $bigl((-1)^{2k}+3bigr)^{2k}=4^{2k}$ and$$sqrt[2k]{4^{2k}}=4,$$you have$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=4lvert x-1rvert.$$
$endgroup$
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
|
show 3 more comments
$begingroup$
Your justification of the equality$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$doesn't hold. You have $bigl((-1)^{2k+1}+3bigr)^{2k+1}=2^{2k+1}$. Therefore, what you should consider here is$$sqrt[2k+1]{2^{2k+1}}=2.$$But, since $bigl((-1)^{2k}+3bigr)^{2k}=4^{2k}$ and$$sqrt[2k]{4^{2k}}=4,$$you have$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=4lvert x-1rvert.$$
$endgroup$
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
|
show 3 more comments
$begingroup$
Your justification of the equality$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$doesn't hold. You have $bigl((-1)^{2k+1}+3bigr)^{2k+1}=2^{2k+1}$. Therefore, what you should consider here is$$sqrt[2k+1]{2^{2k+1}}=2.$$But, since $bigl((-1)^{2k}+3bigr)^{2k}=4^{2k}$ and$$sqrt[2k]{4^{2k}}=4,$$you have$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=4lvert x-1rvert.$$
$endgroup$
Your justification of the equality$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$doesn't hold. You have $bigl((-1)^{2k+1}+3bigr)^{2k+1}=2^{2k+1}$. Therefore, what you should consider here is$$sqrt[2k+1]{2^{2k+1}}=2.$$But, since $bigl((-1)^{2k}+3bigr)^{2k}=4^{2k}$ and$$sqrt[2k]{4^{2k}}=4,$$you have$$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=4lvert x-1rvert.$$
edited Jan 1 at 12:33
answered Jan 1 at 12:00
José Carlos SantosJosé Carlos Santos
170k23132238
170k23132238
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
|
show 3 more comments
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
$begingroup$
Sorry, I edited my work. That equation truly, does not hold!
$endgroup$
– Omojola Micheal
Jan 1 at 12:18
1
1
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
So that, actually, he equality $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lvert x-1rvertlimsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}$$ does hold, as you show, since $$limsup_{ktoinfty}sqrt[k]{ 2^{2k+1}}=4$$
$endgroup$
– Did
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
But the power of $(x-1)$ is $k$. How come? From the above, we should have $ limsup_{ktoinfty} sqrt[k]{left|((-1)^k+3)^k(x-1)^kright|}=4^2|x-1|$ ?
$endgroup$
– Omojola Micheal
Jan 1 at 12:23
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Did: Sorry, I don't get who you're referring to!
$endgroup$
– Omojola Micheal
Jan 1 at 12:24
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
$begingroup$
@Mike The OP starts with the assertion that A=B does not hold, then goes on to show that A=C. It happens that, obviously, C=B. Ergo, problem.
$endgroup$
– Did
Jan 1 at 12:27
|
show 3 more comments
$begingroup$
Hint
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k =lim_{nto infty}left(sum_{k=0}^n 4^{2k}(x-1)^{2k}+2(x-1)sum_{k=0}^n 2^{2k}(x-1)^{2k}right)
$$
and now
$$
sum_{k=0}^n 4^{2k}(x-1)^{2k} = frac{1-4^{2(n+1)}(x-1)^{2(n+1)} }{1-4^{2}(x-1)^{2}}
$$
which converges if $|4(x-1)| < 1$ etc. so the result is
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k=frac{2(x-1)}{1-2^2 (x-1)^2}+frac{1}{1-4^2 (x-1)^2}
$$
for $frac 34lt xlt frac 54$
Attached the plot showing in red the sum approximation for $n = 10$ and in black the asymptotic result found
$endgroup$
add a comment |
$begingroup$
Hint
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k =lim_{nto infty}left(sum_{k=0}^n 4^{2k}(x-1)^{2k}+2(x-1)sum_{k=0}^n 2^{2k}(x-1)^{2k}right)
$$
and now
$$
sum_{k=0}^n 4^{2k}(x-1)^{2k} = frac{1-4^{2(n+1)}(x-1)^{2(n+1)} }{1-4^{2}(x-1)^{2}}
$$
which converges if $|4(x-1)| < 1$ etc. so the result is
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k=frac{2(x-1)}{1-2^2 (x-1)^2}+frac{1}{1-4^2 (x-1)^2}
$$
for $frac 34lt xlt frac 54$
Attached the plot showing in red the sum approximation for $n = 10$ and in black the asymptotic result found
$endgroup$
add a comment |
$begingroup$
Hint
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k =lim_{nto infty}left(sum_{k=0}^n 4^{2k}(x-1)^{2k}+2(x-1)sum_{k=0}^n 2^{2k}(x-1)^{2k}right)
$$
and now
$$
sum_{k=0}^n 4^{2k}(x-1)^{2k} = frac{1-4^{2(n+1)}(x-1)^{2(n+1)} }{1-4^{2}(x-1)^{2}}
$$
which converges if $|4(x-1)| < 1$ etc. so the result is
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k=frac{2(x-1)}{1-2^2 (x-1)^2}+frac{1}{1-4^2 (x-1)^2}
$$
for $frac 34lt xlt frac 54$
Attached the plot showing in red the sum approximation for $n = 10$ and in black the asymptotic result found
$endgroup$
Hint
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k =lim_{nto infty}left(sum_{k=0}^n 4^{2k}(x-1)^{2k}+2(x-1)sum_{k=0}^n 2^{2k}(x-1)^{2k}right)
$$
and now
$$
sum_{k=0}^n 4^{2k}(x-1)^{2k} = frac{1-4^{2(n+1)}(x-1)^{2(n+1)} }{1-4^{2}(x-1)^{2}}
$$
which converges if $|4(x-1)| < 1$ etc. so the result is
$$
sum^{n}_{k=0} ((-1)^k+3)^k(x-1)^k=frac{2(x-1)}{1-2^2 (x-1)^2}+frac{1}{1-4^2 (x-1)^2}
$$
for $frac 34lt xlt frac 54$
Attached the plot showing in red the sum approximation for $n = 10$ and in black the asymptotic result found
edited Jan 1 at 13:24
answered Jan 1 at 12:24
CesareoCesareo
9,4673517
9,4673517
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058414%2ffind-the-interval-of-convergence-of-the-series-sum-infty-limits-k-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
if you ask me $$limsup_{ktoinfty}sqrt[k]{((-1)^k+3)^k(x-1)^k}=lim_{ktoinfty}|x-1|sqrt[k]{4^k}=4|x-1|$$ That is, the greater subsequence is when $((-1)^k+3)^k=4^k$. I dont see exactly where comes $2^{2k+1}$
$endgroup$
– Masacroso
Jan 1 at 11:48
$begingroup$
@Masacroso: Oh oh, that has been my thought too!
$endgroup$
– Omojola Micheal
Jan 1 at 11:54
$begingroup$
@Did: Got your advice!
$endgroup$
– Omojola Micheal
Jan 1 at 12:40