show that we can write $ [B_{frac{1}{N}}(x)]^N=(1+x)$, similar to Binomial expansion
$begingroup$
We know binomial expansion $$B_{a}(x)=(1+x)^a=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}x^n$$ For any $a in mathbb{R} $ or $mathbb{C}$, this series converges in $mathbb{R}$ or $mathbb{C}$ if $|x|<1$.
Now consider an arbitrary complete field $K$ and let $a in K$ and define
$$ B_{a}(X)=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}X^n in K[[X]],$$ where $K[[X]]$ is the ring of formal power series.
$ underline{text{My question}:}$
If $ a=frac{1}{N}, N in mathbb{Z}$ be a rational number and $ x in {x: |x|<1 }$, then show that we can write $$ [B_{frac{1}{N}}(x)]^N=(1+x)$$.
That is to show $left[ B_{frac{1}{N}}(x) right]$ is an $N^{th}$ root of $1+x$.
Answer:
There is a principle as below:
$text{Any identity between real or complex power series involving addition , multiplication is }$
$ text{also an identity in the ring of formal power series}$
I think using this prove the result.
Let $F(X)$ be difference between $ [B_{1/N}(x)]^N$ and $1+x$, i.e., $F(X)=[B_{1/N}(X)]^N-(1+X)$, where $$B_{1/N}(X)=sum_{n=0}^{infty} frac{1/N(1/N-1)(1/N-2) cdots (1/N-n+1)}{n!} X^n in mathbb{Q}[[X]]$$
Then $F(X)$ must vanish for all real values of $X$ in the region $|x|<1$.
If we gather together all $X^n$-terms in this expression, its coefficient must always be $0$.
Since the binomial series converges, $ left[ B_{frac{1}{N}}(x) right]=(1+x)$ can be written as Taylor's series like $$ sum_{n=0}^{infty} c_n x^n$$
Now if we show that $c_n=0 forall n$, then we are done.
Since the formal identity $F(X)$
in $ mathbb{Q}[[X]]$ tells that all coefficients $c_n=0$.
Hence $$left[B_{1/N}(x) right]^N=1+x$$
Is this conclusion true?
power-series formal-power-series
$endgroup$
add a comment |
$begingroup$
We know binomial expansion $$B_{a}(x)=(1+x)^a=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}x^n$$ For any $a in mathbb{R} $ or $mathbb{C}$, this series converges in $mathbb{R}$ or $mathbb{C}$ if $|x|<1$.
Now consider an arbitrary complete field $K$ and let $a in K$ and define
$$ B_{a}(X)=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}X^n in K[[X]],$$ where $K[[X]]$ is the ring of formal power series.
$ underline{text{My question}:}$
If $ a=frac{1}{N}, N in mathbb{Z}$ be a rational number and $ x in {x: |x|<1 }$, then show that we can write $$ [B_{frac{1}{N}}(x)]^N=(1+x)$$.
That is to show $left[ B_{frac{1}{N}}(x) right]$ is an $N^{th}$ root of $1+x$.
Answer:
There is a principle as below:
$text{Any identity between real or complex power series involving addition , multiplication is }$
$ text{also an identity in the ring of formal power series}$
I think using this prove the result.
Let $F(X)$ be difference between $ [B_{1/N}(x)]^N$ and $1+x$, i.e., $F(X)=[B_{1/N}(X)]^N-(1+X)$, where $$B_{1/N}(X)=sum_{n=0}^{infty} frac{1/N(1/N-1)(1/N-2) cdots (1/N-n+1)}{n!} X^n in mathbb{Q}[[X]]$$
Then $F(X)$ must vanish for all real values of $X$ in the region $|x|<1$.
If we gather together all $X^n$-terms in this expression, its coefficient must always be $0$.
Since the binomial series converges, $ left[ B_{frac{1}{N}}(x) right]=(1+x)$ can be written as Taylor's series like $$ sum_{n=0}^{infty} c_n x^n$$
Now if we show that $c_n=0 forall n$, then we are done.
Since the formal identity $F(X)$
in $ mathbb{Q}[[X]]$ tells that all coefficients $c_n=0$.
Hence $$left[B_{1/N}(x) right]^N=1+x$$
Is this conclusion true?
power-series formal-power-series
$endgroup$
add a comment |
$begingroup$
We know binomial expansion $$B_{a}(x)=(1+x)^a=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}x^n$$ For any $a in mathbb{R} $ or $mathbb{C}$, this series converges in $mathbb{R}$ or $mathbb{C}$ if $|x|<1$.
Now consider an arbitrary complete field $K$ and let $a in K$ and define
$$ B_{a}(X)=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}X^n in K[[X]],$$ where $K[[X]]$ is the ring of formal power series.
$ underline{text{My question}:}$
If $ a=frac{1}{N}, N in mathbb{Z}$ be a rational number and $ x in {x: |x|<1 }$, then show that we can write $$ [B_{frac{1}{N}}(x)]^N=(1+x)$$.
That is to show $left[ B_{frac{1}{N}}(x) right]$ is an $N^{th}$ root of $1+x$.
Answer:
There is a principle as below:
$text{Any identity between real or complex power series involving addition , multiplication is }$
$ text{also an identity in the ring of formal power series}$
I think using this prove the result.
Let $F(X)$ be difference between $ [B_{1/N}(x)]^N$ and $1+x$, i.e., $F(X)=[B_{1/N}(X)]^N-(1+X)$, where $$B_{1/N}(X)=sum_{n=0}^{infty} frac{1/N(1/N-1)(1/N-2) cdots (1/N-n+1)}{n!} X^n in mathbb{Q}[[X]]$$
Then $F(X)$ must vanish for all real values of $X$ in the region $|x|<1$.
If we gather together all $X^n$-terms in this expression, its coefficient must always be $0$.
Since the binomial series converges, $ left[ B_{frac{1}{N}}(x) right]=(1+x)$ can be written as Taylor's series like $$ sum_{n=0}^{infty} c_n x^n$$
Now if we show that $c_n=0 forall n$, then we are done.
Since the formal identity $F(X)$
in $ mathbb{Q}[[X]]$ tells that all coefficients $c_n=0$.
Hence $$left[B_{1/N}(x) right]^N=1+x$$
Is this conclusion true?
power-series formal-power-series
$endgroup$
We know binomial expansion $$B_{a}(x)=(1+x)^a=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}x^n$$ For any $a in mathbb{R} $ or $mathbb{C}$, this series converges in $mathbb{R}$ or $mathbb{C}$ if $|x|<1$.
Now consider an arbitrary complete field $K$ and let $a in K$ and define
$$ B_{a}(X)=sum_{n=0}^{infty} frac{a(a-1)(a-2) cdots (a-n+1)}{n!}X^n in K[[X]],$$ where $K[[X]]$ is the ring of formal power series.
$ underline{text{My question}:}$
If $ a=frac{1}{N}, N in mathbb{Z}$ be a rational number and $ x in {x: |x|<1 }$, then show that we can write $$ [B_{frac{1}{N}}(x)]^N=(1+x)$$.
That is to show $left[ B_{frac{1}{N}}(x) right]$ is an $N^{th}$ root of $1+x$.
Answer:
There is a principle as below:
$text{Any identity between real or complex power series involving addition , multiplication is }$
$ text{also an identity in the ring of formal power series}$
I think using this prove the result.
Let $F(X)$ be difference between $ [B_{1/N}(x)]^N$ and $1+x$, i.e., $F(X)=[B_{1/N}(X)]^N-(1+X)$, where $$B_{1/N}(X)=sum_{n=0}^{infty} frac{1/N(1/N-1)(1/N-2) cdots (1/N-n+1)}{n!} X^n in mathbb{Q}[[X]]$$
Then $F(X)$ must vanish for all real values of $X$ in the region $|x|<1$.
If we gather together all $X^n$-terms in this expression, its coefficient must always be $0$.
Since the binomial series converges, $ left[ B_{frac{1}{N}}(x) right]=(1+x)$ can be written as Taylor's series like $$ sum_{n=0}^{infty} c_n x^n$$
Now if we show that $c_n=0 forall n$, then we are done.
Since the formal identity $F(X)$
in $ mathbb{Q}[[X]]$ tells that all coefficients $c_n=0$.
Hence $$left[B_{1/N}(x) right]^N=1+x$$
Is this conclusion true?
power-series formal-power-series
power-series formal-power-series
edited Jan 1 at 16:23
Larry
2,53031131
2,53031131
asked Jan 1 at 13:55
M. A. SARKARM. A. SARKAR
2,4551820
2,4551820
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058501%2fshow-that-we-can-write-b-frac1nxn-1x-similar-to-binomial-expa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058501%2fshow-that-we-can-write-b-frac1nxn-1x-similar-to-binomial-expa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown