Generalizing...












3












$begingroup$


I am trying to generalize the fact that, for $k>frac12$,




$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$




To reach this I start off with the Fourier series



$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$



integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$

plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have



$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$

I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$

And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Sorry, what does $zeta$ stand for?
    $endgroup$
    – Omojola Micheal
    Jan 1 at 11:08










  • $begingroup$
    @Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
    $endgroup$
    – mrtaurho
    Jan 1 at 11:56








  • 1




    $begingroup$
    @Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
    $endgroup$
    – mrtaurho
    Jan 1 at 12:25






  • 1




    $begingroup$
    @clathratus: Thanks for that!
    $endgroup$
    – Omojola Micheal
    Jan 1 at 19:48






  • 1




    $begingroup$
    How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
    $endgroup$
    – Shashi
    Jan 1 at 22:43


















3












$begingroup$


I am trying to generalize the fact that, for $k>frac12$,




$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$




To reach this I start off with the Fourier series



$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$



integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$

plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have



$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$

I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$

And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Sorry, what does $zeta$ stand for?
    $endgroup$
    – Omojola Micheal
    Jan 1 at 11:08










  • $begingroup$
    @Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
    $endgroup$
    – mrtaurho
    Jan 1 at 11:56








  • 1




    $begingroup$
    @Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
    $endgroup$
    – mrtaurho
    Jan 1 at 12:25






  • 1




    $begingroup$
    @clathratus: Thanks for that!
    $endgroup$
    – Omojola Micheal
    Jan 1 at 19:48






  • 1




    $begingroup$
    How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
    $endgroup$
    – Shashi
    Jan 1 at 22:43
















3












3








3


3



$begingroup$


I am trying to generalize the fact that, for $k>frac12$,




$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$




To reach this I start off with the Fourier series



$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$



integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$

plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have



$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$

I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$

And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.










share|cite|improve this question











$endgroup$




I am trying to generalize the fact that, for $k>frac12$,




$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$




To reach this I start off with the Fourier series



$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$



integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$

plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have



$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$

I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$

And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.







real-analysis sequences-and-series fourier-series riemann-zeta






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 2:06







clathratus

















asked Jan 1 at 10:30









clathratusclathratus

4,9641438




4,9641438












  • $begingroup$
    Sorry, what does $zeta$ stand for?
    $endgroup$
    – Omojola Micheal
    Jan 1 at 11:08










  • $begingroup$
    @Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
    $endgroup$
    – mrtaurho
    Jan 1 at 11:56








  • 1




    $begingroup$
    @Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
    $endgroup$
    – mrtaurho
    Jan 1 at 12:25






  • 1




    $begingroup$
    @clathratus: Thanks for that!
    $endgroup$
    – Omojola Micheal
    Jan 1 at 19:48






  • 1




    $begingroup$
    How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
    $endgroup$
    – Shashi
    Jan 1 at 22:43




















  • $begingroup$
    Sorry, what does $zeta$ stand for?
    $endgroup$
    – Omojola Micheal
    Jan 1 at 11:08










  • $begingroup$
    @Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
    $endgroup$
    – mrtaurho
    Jan 1 at 11:56








  • 1




    $begingroup$
    @Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
    $endgroup$
    – mrtaurho
    Jan 1 at 12:25






  • 1




    $begingroup$
    @clathratus: Thanks for that!
    $endgroup$
    – Omojola Micheal
    Jan 1 at 19:48






  • 1




    $begingroup$
    How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
    $endgroup$
    – Shashi
    Jan 1 at 22:43


















$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08




$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08












$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56






$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56






1




1




$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25




$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25




1




1




$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48




$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48




1




1




$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43






$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058362%2fgeneralizing-sum-limits-m-geq1-sum-limits-n-geq1-frac-1nn3-sinn-m%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058362%2fgeneralizing-sum-limits-m-geq1-sum-limits-n-geq1-frac-1nn3-sinn-m%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen