Generalizing...
$begingroup$
I am trying to generalize the fact that, for $k>frac12$,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
To reach this I start off with the Fourier series
$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$
integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$
plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have
$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$
I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$
And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.
real-analysis sequences-and-series fourier-series riemann-zeta
$endgroup$
|
show 6 more comments
$begingroup$
I am trying to generalize the fact that, for $k>frac12$,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
To reach this I start off with the Fourier series
$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$
integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$
plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have
$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$
I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$
And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.
real-analysis sequences-and-series fourier-series riemann-zeta
$endgroup$
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
1
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
1
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
1
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43
|
show 6 more comments
$begingroup$
I am trying to generalize the fact that, for $k>frac12$,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
To reach this I start off with the Fourier series
$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$
integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$
plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have
$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$
I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$
And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.
real-analysis sequences-and-series fourier-series riemann-zeta
$endgroup$
I am trying to generalize the fact that, for $k>frac12$,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
To reach this I start off with the Fourier series
$$
t^2=frac{pi^2}3+4sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt),qquad |t|leqpi\
sum_{ngeq1}frac{(-1)^n}{n^2}cos(nt)=frac{t^2}4-frac{pi^2}{12}
$$
integrate both sides from $0$ to $x$:
$$
sum_{ngeq1}frac{(-1)^n}{n^2}int_0^xcos(nt)dt=frac{x^3}{12}-frac{pi^2x}{12}\
sum_{ngeq1}frac{(-1)^n}{n^3}sin(nx)=frac{x^3}{12}-frac{pi^2x}{12}
$$
plugging in $x=m^{-2k}$ for $mgeq1$, and $k>1/2$,
$$sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12m^{6k}}-frac{pi^2}{12m^{2k}}$$
Then applying $sumlimits_{mgeq1}$ on both sides,
$$sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^3}sin(n/m^{2k})=frac1{12}zeta(6k)-frac{pi^2}{12}zeta(2k)$$
With the same process, we have
$$begin{align}
sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^5}sin(n/m^{2k})&=frac{pi^2}{72}zeta(6k)-frac1{240}zeta(10k)-frac{7pi^4}{720}zeta(2k)\
end{align}$$
I am trying to find a general form in terms of $zeta$ values of
$$begin{align}
S_j(k)&=sum_{mgeq1}sum_{ngeq1}frac{(-1)^n}{n^j}sin(n/m^{2k}),qquad text{j is odd},quad j>0\
end{align}$$
And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.
real-analysis sequences-and-series fourier-series riemann-zeta
real-analysis sequences-and-series fourier-series riemann-zeta
edited Jan 2 at 2:06
clathratus
asked Jan 1 at 10:30
clathratusclathratus
4,9641438
4,9641438
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
1
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
1
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
1
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43
|
show 6 more comments
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
1
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
1
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
1
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
1
1
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
1
1
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
1
1
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43
|
show 6 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058362%2fgeneralizing-sum-limits-m-geq1-sum-limits-n-geq1-frac-1nn3-sinn-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058362%2fgeneralizing-sum-limits-m-geq1-sum-limits-n-geq1-frac-1nn3-sinn-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Sorry, what does $zeta$ stand for?
$endgroup$
– Omojola Micheal
Jan 1 at 11:08
$begingroup$
@Mike I assume that this should be the Riemann Zeta Function $zeta(s)$ hence you can see how the $frac1{4m^{4k}}$ term of the RHS within the line $$sum_{ngeq1}frac{(-1)^n}{n^2}cos(n/m^{2k})=frac1{4m^{4k}}-frac{pi^2}{12}$$ becomes $frac14zeta(4k)$ after summing over all integer $mgeq 1$ which equals the defintion of the Riemann Zeta Function for $operatorname{Re}(4k)>1$.
$endgroup$
– mrtaurho
Jan 1 at 11:56
1
$begingroup$
@Did Why did you only changed it in the first line at not beneath where the same notation is used seven more times?
$endgroup$
– mrtaurho
Jan 1 at 12:25
1
$begingroup$
@clathratus: Thanks for that!
$endgroup$
– Omojola Micheal
Jan 1 at 19:48
1
$begingroup$
How is $$sum_{mgeq 1}left( frac{1}{4m^{2k}} -frac{pi^2}{12}right) $$ convergent? That is what you are summing, right? The first term gives the zeta term but the other term gives $-infty$ if I'm not mistaken.
$endgroup$
– Shashi
Jan 1 at 22:43