Problem on exact sequences
$begingroup$
Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.
We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.
commutative-algebra modules exact-sequence
$endgroup$
add a comment |
$begingroup$
Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.
We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.
commutative-algebra modules exact-sequence
$endgroup$
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38
add a comment |
$begingroup$
Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.
We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.
commutative-algebra modules exact-sequence
$endgroup$
Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.
We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.
commutative-algebra modules exact-sequence
commutative-algebra modules exact-sequence
edited Jan 1 at 12:34
Bernard
123k741117
123k741117
asked Jan 1 at 12:02
AnupamAnupam
2,5211825
2,5211825
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38
add a comment |
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058430%2fproblem-on-exact-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.
$endgroup$
add a comment |
$begingroup$
Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.
$endgroup$
add a comment |
$begingroup$
Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.
$endgroup$
Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.
answered Jan 1 at 15:37
José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda
802110
802110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058430%2fproblem-on-exact-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11
$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38