Integrate Vector Laplacian By Parts For FEM












1












$begingroup$


I am currently trying to solve the following, vectorial Poisson equation using the FEM technique:



$$-nabla^2 vec{A}=vec{J} quad forall xinOmega$$



Now I know in the case of the scalar Poisson equation $-nabla^2 varphi=rho$ one can derive the weak form of the PDE by introducing a scalar test function $v$ which is multiplied with the PDE and integrated over $Omega$ using integration by parts:



$$int_{Omega} (nabla^2varphi) v mathrm{d}x=int_{partialOmega} (vec{nabla}varphi) v mathrm{d}vec{omega}-int_{Omega} (vec{nabla}varphi) cdot(vec{nabla}v) mathrm{d}x$$



My question is how this approach can be applied to the vectorial Poisson equation? In order to do so, one would have to integrate the following expression by parts (where $vec{v}$ is a vectorial test function):



$$int_{Omega} (nabla^2vec{A})cdotvec{v} mathrm{d}x$$



However, I am struggling to do this integration. I guess one would have to generalize the following identity for scalar functions $varphi$



$$vec{nabla}cdot(vvec{nabla}varphi)=(nabla^2varphi) v+(vec{nabla}varphi)cdot(vec{nabla}v)$$



into an identity of the following form for vectorial functions $vec{A}$



$$vec{nabla}cdot(...)=(nabla^2vec{A})vec{v}+(...)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 29 '18 at 15:21










  • $begingroup$
    Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
    $endgroup$
    – Mantabit
    Dec 29 '18 at 18:39












  • $begingroup$
    Glad to help @Mantabit. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 30 '18 at 18:02
















1












$begingroup$


I am currently trying to solve the following, vectorial Poisson equation using the FEM technique:



$$-nabla^2 vec{A}=vec{J} quad forall xinOmega$$



Now I know in the case of the scalar Poisson equation $-nabla^2 varphi=rho$ one can derive the weak form of the PDE by introducing a scalar test function $v$ which is multiplied with the PDE and integrated over $Omega$ using integration by parts:



$$int_{Omega} (nabla^2varphi) v mathrm{d}x=int_{partialOmega} (vec{nabla}varphi) v mathrm{d}vec{omega}-int_{Omega} (vec{nabla}varphi) cdot(vec{nabla}v) mathrm{d}x$$



My question is how this approach can be applied to the vectorial Poisson equation? In order to do so, one would have to integrate the following expression by parts (where $vec{v}$ is a vectorial test function):



$$int_{Omega} (nabla^2vec{A})cdotvec{v} mathrm{d}x$$



However, I am struggling to do this integration. I guess one would have to generalize the following identity for scalar functions $varphi$



$$vec{nabla}cdot(vvec{nabla}varphi)=(nabla^2varphi) v+(vec{nabla}varphi)cdot(vec{nabla}v)$$



into an identity of the following form for vectorial functions $vec{A}$



$$vec{nabla}cdot(...)=(nabla^2vec{A})vec{v}+(...)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 29 '18 at 15:21










  • $begingroup$
    Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
    $endgroup$
    – Mantabit
    Dec 29 '18 at 18:39












  • $begingroup$
    Glad to help @Mantabit. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 30 '18 at 18:02














1












1








1





$begingroup$


I am currently trying to solve the following, vectorial Poisson equation using the FEM technique:



$$-nabla^2 vec{A}=vec{J} quad forall xinOmega$$



Now I know in the case of the scalar Poisson equation $-nabla^2 varphi=rho$ one can derive the weak form of the PDE by introducing a scalar test function $v$ which is multiplied with the PDE and integrated over $Omega$ using integration by parts:



$$int_{Omega} (nabla^2varphi) v mathrm{d}x=int_{partialOmega} (vec{nabla}varphi) v mathrm{d}vec{omega}-int_{Omega} (vec{nabla}varphi) cdot(vec{nabla}v) mathrm{d}x$$



My question is how this approach can be applied to the vectorial Poisson equation? In order to do so, one would have to integrate the following expression by parts (where $vec{v}$ is a vectorial test function):



$$int_{Omega} (nabla^2vec{A})cdotvec{v} mathrm{d}x$$



However, I am struggling to do this integration. I guess one would have to generalize the following identity for scalar functions $varphi$



$$vec{nabla}cdot(vvec{nabla}varphi)=(nabla^2varphi) v+(vec{nabla}varphi)cdot(vec{nabla}v)$$



into an identity of the following form for vectorial functions $vec{A}$



$$vec{nabla}cdot(...)=(nabla^2vec{A})vec{v}+(...)$$










share|cite|improve this question











$endgroup$




I am currently trying to solve the following, vectorial Poisson equation using the FEM technique:



$$-nabla^2 vec{A}=vec{J} quad forall xinOmega$$



Now I know in the case of the scalar Poisson equation $-nabla^2 varphi=rho$ one can derive the weak form of the PDE by introducing a scalar test function $v$ which is multiplied with the PDE and integrated over $Omega$ using integration by parts:



$$int_{Omega} (nabla^2varphi) v mathrm{d}x=int_{partialOmega} (vec{nabla}varphi) v mathrm{d}vec{omega}-int_{Omega} (vec{nabla}varphi) cdot(vec{nabla}v) mathrm{d}x$$



My question is how this approach can be applied to the vectorial Poisson equation? In order to do so, one would have to integrate the following expression by parts (where $vec{v}$ is a vectorial test function):



$$int_{Omega} (nabla^2vec{A})cdotvec{v} mathrm{d}x$$



However, I am struggling to do this integration. I guess one would have to generalize the following identity for scalar functions $varphi$



$$vec{nabla}cdot(vvec{nabla}varphi)=(nabla^2varphi) v+(vec{nabla}varphi)cdot(vec{nabla}v)$$



into an identity of the following form for vectorial functions $vec{A}$



$$vec{nabla}cdot(...)=(nabla^2vec{A})vec{v}+(...)$$







integration ordinary-differential-equations multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 18:36







Mantabit

















asked Dec 29 '18 at 13:32









MantabitMantabit

164




164












  • $begingroup$
    Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 29 '18 at 15:21










  • $begingroup$
    Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
    $endgroup$
    – Mantabit
    Dec 29 '18 at 18:39












  • $begingroup$
    Glad to help @Mantabit. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 30 '18 at 18:02


















  • $begingroup$
    Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 29 '18 at 15:21










  • $begingroup$
    Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
    $endgroup$
    – Mantabit
    Dec 29 '18 at 18:39












  • $begingroup$
    Glad to help @Mantabit. Best, Daniel.
    $endgroup$
    – Dmoreno
    Dec 30 '18 at 18:02
















$begingroup$
Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
$endgroup$
– Dmoreno
Dec 29 '18 at 15:21




$begingroup$
Perhaps you'll find my old post useful: math.stackexchange.com/questions/745000/greens-first-identity. Best, Daniel.
$endgroup$
– Dmoreno
Dec 29 '18 at 15:21












$begingroup$
Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
$endgroup$
– Mantabit
Dec 29 '18 at 18:39






$begingroup$
Thank you for your response. It seems like the vector calculus identity $nabla cdot(mathbf{T} cdot vec{omega} ) = T:nablavec{omega} + (nabla cdot mathbf{T}) cdotvec{omega}$ which you linked solves the problem. I was able to come to the same solution with some different reasoning. I'll check the identity with some symbolic math software and then formulate an answer to my own question.
$endgroup$
– Mantabit
Dec 29 '18 at 18:39














$begingroup$
Glad to help @Mantabit. Best, Daniel.
$endgroup$
– Dmoreno
Dec 30 '18 at 18:02




$begingroup$
Glad to help @Mantabit. Best, Daniel.
$endgroup$
– Dmoreno
Dec 30 '18 at 18:02










1 Answer
1






active

oldest

votes


















0












$begingroup$

Not sure if this is useful, but have a look at this identity for the divergence of a matrix $mathbf{A}$ acting on a vector $vec{v}$:



$$vecnabla cdot (mathbf{A}vec{v}) = (vecnabla cdot mathbf{A}) vec{v} + operatorname{Tr}left(mathbf{A}(vecnablavec{v})right)$$



Now if you take $mathbf{A}$ to be the Jacobi matrix of your vector field $vec{A}$, i.e. $mathbf{A}= vec{nabla} vec{A}$, you get



$$vecnabla cdot big((vec{nabla} vec{A})vec{v}big) = left(vecnabla cdot (vec{nabla} vec{A})right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right) = left(nabla^2vec{A}right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055842%2fintegrate-vector-laplacian-by-parts-for-fem%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Not sure if this is useful, but have a look at this identity for the divergence of a matrix $mathbf{A}$ acting on a vector $vec{v}$:



    $$vecnabla cdot (mathbf{A}vec{v}) = (vecnabla cdot mathbf{A}) vec{v} + operatorname{Tr}left(mathbf{A}(vecnablavec{v})right)$$



    Now if you take $mathbf{A}$ to be the Jacobi matrix of your vector field $vec{A}$, i.e. $mathbf{A}= vec{nabla} vec{A}$, you get



    $$vecnabla cdot big((vec{nabla} vec{A})vec{v}big) = left(vecnabla cdot (vec{nabla} vec{A})right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right) = left(nabla^2vec{A}right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Not sure if this is useful, but have a look at this identity for the divergence of a matrix $mathbf{A}$ acting on a vector $vec{v}$:



      $$vecnabla cdot (mathbf{A}vec{v}) = (vecnabla cdot mathbf{A}) vec{v} + operatorname{Tr}left(mathbf{A}(vecnablavec{v})right)$$



      Now if you take $mathbf{A}$ to be the Jacobi matrix of your vector field $vec{A}$, i.e. $mathbf{A}= vec{nabla} vec{A}$, you get



      $$vecnabla cdot big((vec{nabla} vec{A})vec{v}big) = left(vecnabla cdot (vec{nabla} vec{A})right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right) = left(nabla^2vec{A}right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Not sure if this is useful, but have a look at this identity for the divergence of a matrix $mathbf{A}$ acting on a vector $vec{v}$:



        $$vecnabla cdot (mathbf{A}vec{v}) = (vecnabla cdot mathbf{A}) vec{v} + operatorname{Tr}left(mathbf{A}(vecnablavec{v})right)$$



        Now if you take $mathbf{A}$ to be the Jacobi matrix of your vector field $vec{A}$, i.e. $mathbf{A}= vec{nabla} vec{A}$, you get



        $$vecnabla cdot big((vec{nabla} vec{A})vec{v}big) = left(vecnabla cdot (vec{nabla} vec{A})right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right) = left(nabla^2vec{A}right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right)$$






        share|cite|improve this answer









        $endgroup$



        Not sure if this is useful, but have a look at this identity for the divergence of a matrix $mathbf{A}$ acting on a vector $vec{v}$:



        $$vecnabla cdot (mathbf{A}vec{v}) = (vecnabla cdot mathbf{A}) vec{v} + operatorname{Tr}left(mathbf{A}(vecnablavec{v})right)$$



        Now if you take $mathbf{A}$ to be the Jacobi matrix of your vector field $vec{A}$, i.e. $mathbf{A}= vec{nabla} vec{A}$, you get



        $$vecnabla cdot big((vec{nabla} vec{A})vec{v}big) = left(vecnabla cdot (vec{nabla} vec{A})right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right) = left(nabla^2vec{A}right) vec{v} + operatorname{Tr}left((vec{nabla} vec{A})(vecnablavec{v})right)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 29 '18 at 22:02









        mechanodroidmechanodroid

        28.9k62548




        28.9k62548






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055842%2fintegrate-vector-laplacian-by-parts-for-fem%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen