ValueError: could not convert string to float while implementing sklearn
I am new in this, I am getting some error like this ;
File "C:UsersHimanshuDesktopProjectMLPractmlp1.py", line 268, in
<module> cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
File "C:UsersHimanshuAppDataRoamingPythonPython27site-
packagessklearnmodel_selection_validation.py", line 402, in cross_val_score
error_score=error_score)
.
.
etc..like above)
ValueError: could not convert string to float: transact
the shape of the dataset I am using is (30,216)
array = dataset.values
X = array[:,0:215]
Y = array[:,215]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y, test_size=validation_size,
random_state=seed)
I want to know, am I Splitting it correctly or not.
Can someone please suggest why this error is occurring.
Edited:
I am adding the rest of the code :
scoring = 'accuracy'
# Spot Check Algorithms
models =
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results =
names =
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
python python-2.7 machine-learning scikit-learn sklearn-pandas
add a comment |
I am new in this, I am getting some error like this ;
File "C:UsersHimanshuDesktopProjectMLPractmlp1.py", line 268, in
<module> cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
File "C:UsersHimanshuAppDataRoamingPythonPython27site-
packagessklearnmodel_selection_validation.py", line 402, in cross_val_score
error_score=error_score)
.
.
etc..like above)
ValueError: could not convert string to float: transact
the shape of the dataset I am using is (30,216)
array = dataset.values
X = array[:,0:215]
Y = array[:,215]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y, test_size=validation_size,
random_state=seed)
I want to know, am I Splitting it correctly or not.
Can someone please suggest why this error is occurring.
Edited:
I am adding the rest of the code :
scoring = 'accuracy'
# Spot Check Algorithms
models =
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results =
names =
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
python python-2.7 machine-learning scikit-learn sklearn-pandas
1
You have some string values in your dataX_train
. Convert them to numbers
– Vivek Kumar
Nov 26 '18 at 7:44
add a comment |
I am new in this, I am getting some error like this ;
File "C:UsersHimanshuDesktopProjectMLPractmlp1.py", line 268, in
<module> cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
File "C:UsersHimanshuAppDataRoamingPythonPython27site-
packagessklearnmodel_selection_validation.py", line 402, in cross_val_score
error_score=error_score)
.
.
etc..like above)
ValueError: could not convert string to float: transact
the shape of the dataset I am using is (30,216)
array = dataset.values
X = array[:,0:215]
Y = array[:,215]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y, test_size=validation_size,
random_state=seed)
I want to know, am I Splitting it correctly or not.
Can someone please suggest why this error is occurring.
Edited:
I am adding the rest of the code :
scoring = 'accuracy'
# Spot Check Algorithms
models =
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results =
names =
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
python python-2.7 machine-learning scikit-learn sklearn-pandas
I am new in this, I am getting some error like this ;
File "C:UsersHimanshuDesktopProjectMLPractmlp1.py", line 268, in
<module> cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
File "C:UsersHimanshuAppDataRoamingPythonPython27site-
packagessklearnmodel_selection_validation.py", line 402, in cross_val_score
error_score=error_score)
.
.
etc..like above)
ValueError: could not convert string to float: transact
the shape of the dataset I am using is (30,216)
array = dataset.values
X = array[:,0:215]
Y = array[:,215]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation =
model_selection.train_test_split(X, Y, test_size=validation_size,
random_state=seed)
I want to know, am I Splitting it correctly or not.
Can someone please suggest why this error is occurring.
Edited:
I am adding the rest of the code :
scoring = 'accuracy'
# Spot Check Algorithms
models =
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results =
names =
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train,
cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
python python-2.7 machine-learning scikit-learn sklearn-pandas
python python-2.7 machine-learning scikit-learn sklearn-pandas
edited Nov 25 '18 at 21:22
Ashwani Tandon
asked Nov 25 '18 at 19:37
Ashwani TandonAshwani Tandon
62
62
1
You have some string values in your dataX_train
. Convert them to numbers
– Vivek Kumar
Nov 26 '18 at 7:44
add a comment |
1
You have some string values in your dataX_train
. Convert them to numbers
– Vivek Kumar
Nov 26 '18 at 7:44
1
1
You have some string values in your data
X_train
. Convert them to numbers– Vivek Kumar
Nov 26 '18 at 7:44
You have some string values in your data
X_train
. Convert them to numbers– Vivek Kumar
Nov 26 '18 at 7:44
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471140%2fvalueerror-could-not-convert-string-to-float-while-implementing-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471140%2fvalueerror-could-not-convert-string-to-float-while-implementing-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
You have some string values in your data
X_train
. Convert them to numbers– Vivek Kumar
Nov 26 '18 at 7:44