Convert this grammar to language
$begingroup$
I want to convert the following grammar to language but I am not able to think and answer.
$$S to aSa mid bSa mid ab mid ba$$
It gives me a lot of choices when I tried building its derivation tree.
automata context-free-grammar
$endgroup$
add a comment |
$begingroup$
I want to convert the following grammar to language but I am not able to think and answer.
$$S to aSa mid bSa mid ab mid ba$$
It gives me a lot of choices when I tried building its derivation tree.
automata context-free-grammar
$endgroup$
add a comment |
$begingroup$
I want to convert the following grammar to language but I am not able to think and answer.
$$S to aSa mid bSa mid ab mid ba$$
It gives me a lot of choices when I tried building its derivation tree.
automata context-free-grammar
$endgroup$
I want to convert the following grammar to language but I am not able to think and answer.
$$S to aSa mid bSa mid ab mid ba$$
It gives me a lot of choices when I tried building its derivation tree.
automata context-free-grammar
automata context-free-grammar
edited Dec 8 '18 at 20:15
Hans Hüttel
3,1972921
3,1972921
asked Dec 8 '18 at 19:55
Nikhil SatiNikhil Sati
31
31
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Welcome to MSE. There is basically one case:
Start either with $Srightarrow^* a^mSa^m$ or $Srightarrow^* b^nSa^n$ and alternate and finally replace $S$ either by $ab$ or $ba$. This gives the language
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ab)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}$$
union with
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ba)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031560%2fconvert-this-grammar-to-language%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Welcome to MSE. There is basically one case:
Start either with $Srightarrow^* a^mSa^m$ or $Srightarrow^* b^nSa^n$ and alternate and finally replace $S$ either by $ab$ or $ba$. This gives the language
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ab)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}$$
union with
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ba)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}.$$
$endgroup$
add a comment |
$begingroup$
Welcome to MSE. There is basically one case:
Start either with $Srightarrow^* a^mSa^m$ or $Srightarrow^* b^nSa^n$ and alternate and finally replace $S$ either by $ab$ or $ba$. This gives the language
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ab)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}$$
union with
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ba)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}.$$
$endgroup$
add a comment |
$begingroup$
Welcome to MSE. There is basically one case:
Start either with $Srightarrow^* a^mSa^m$ or $Srightarrow^* b^nSa^n$ and alternate and finally replace $S$ either by $ab$ or $ba$. This gives the language
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ab)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}$$
union with
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ba)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}.$$
$endgroup$
Welcome to MSE. There is basically one case:
Start either with $Srightarrow^* a^mSa^m$ or $Srightarrow^* b^nSa^n$ and alternate and finally replace $S$ either by $ab$ or $ba$. This gives the language
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ab)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}$$
union with
$${a^{n_1} b^{n_2} ldots a^{n_{k-1}} b^{n_k} (ba)
a^{n_k} a^{n_{k-1}} ldots a^{n_2} a^{n_1}mid n_1,ldots,n_kgeq 0, kgeq 0}.$$
edited Dec 10 '18 at 13:36
answered Dec 10 '18 at 13:09
WuestenfuxWuestenfux
4,2431413
4,2431413
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031560%2fconvert-this-grammar-to-language%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown