How to calculate dynamically the sum for each element of nestled list in r?












1















I have this data frame:



split.test.input <- data.frame(matrix(ncol=7,nrow=10,
c(rep("a",4),rep("b",4),rep("c",2),1910:1913,1902:1905,1925:1926,
rep("year",4),rep("month",3),rep("year",3),
rep("ITA",4),rep("HVR",2),rep("ITA",2),rep("ESP",2),
rep("GSA 17",5),rep("GSA 1",2),rep("GSA 12",3),
rep("gear 1",4),rep("gear 2",6),75,45,230,89,45,78,96,100,125,200)))

colnames(split.test.input) <- c("species", "year", "Time.unit","country","GSA","Gear","Quantity")


I split for many variable:



split.res <- dlply(split.test.input,.(species),
dlply,.(Time.unit),
dlply,.(country),
dlply,.(GSA),
dlply,.(Gear))


Now, I would like to calculate some statistical analysis (in this case sum) for each quantity of each element of a list, I extract for example the first list (list of a list of a list etc..):



df.fromSplit <- data.frame(split.res[["a"]][["year"]][["ITA"]][["GSA 17"]][["gear 1"]][["Quantity"]])     


colnames(df.fromSplit) <- "a,year,ITA,GSA 17,gear.1" #the name of my variables for the first list
df.fromSplit
a,year,ITA,GSA 17,gear.1
1 75
2 45
3 230
4 89


I would like to calculate sum for this column:



sum(as.numeric(levels(df.fromSplit[,1])[df.fromSplit[,1]] ))     
439


but it's not elegant...



IMPORTANT




I would like to calculate dynamically the sum for each quantity
of each element of my list. The result could be (more or less) a data
frame or many data frame (one for each list) as:




    combination             sum
a,year,ITA,GSA 17,gear.1 439
b,month,HVR,GSA.1,gear.2 78
[...]
and so on for each combination of list


I thought a for loop which can extract each element of a list and it calculate the sum for the quantity of each list, but with for loop I don't know how extract each list based on variables (my experience with a list is very low)










share|improve this question



























    1















    I have this data frame:



    split.test.input <- data.frame(matrix(ncol=7,nrow=10,
    c(rep("a",4),rep("b",4),rep("c",2),1910:1913,1902:1905,1925:1926,
    rep("year",4),rep("month",3),rep("year",3),
    rep("ITA",4),rep("HVR",2),rep("ITA",2),rep("ESP",2),
    rep("GSA 17",5),rep("GSA 1",2),rep("GSA 12",3),
    rep("gear 1",4),rep("gear 2",6),75,45,230,89,45,78,96,100,125,200)))

    colnames(split.test.input) <- c("species", "year", "Time.unit","country","GSA","Gear","Quantity")


    I split for many variable:



    split.res <- dlply(split.test.input,.(species),
    dlply,.(Time.unit),
    dlply,.(country),
    dlply,.(GSA),
    dlply,.(Gear))


    Now, I would like to calculate some statistical analysis (in this case sum) for each quantity of each element of a list, I extract for example the first list (list of a list of a list etc..):



    df.fromSplit <- data.frame(split.res[["a"]][["year"]][["ITA"]][["GSA 17"]][["gear 1"]][["Quantity"]])     


    colnames(df.fromSplit) <- "a,year,ITA,GSA 17,gear.1" #the name of my variables for the first list
    df.fromSplit
    a,year,ITA,GSA 17,gear.1
    1 75
    2 45
    3 230
    4 89


    I would like to calculate sum for this column:



    sum(as.numeric(levels(df.fromSplit[,1])[df.fromSplit[,1]] ))     
    439


    but it's not elegant...



    IMPORTANT




    I would like to calculate dynamically the sum for each quantity
    of each element of my list. The result could be (more or less) a data
    frame or many data frame (one for each list) as:




        combination             sum
    a,year,ITA,GSA 17,gear.1 439
    b,month,HVR,GSA.1,gear.2 78
    [...]
    and so on for each combination of list


    I thought a for loop which can extract each element of a list and it calculate the sum for the quantity of each list, but with for loop I don't know how extract each list based on variables (my experience with a list is very low)










    share|improve this question

























      1












      1








      1








      I have this data frame:



      split.test.input <- data.frame(matrix(ncol=7,nrow=10,
      c(rep("a",4),rep("b",4),rep("c",2),1910:1913,1902:1905,1925:1926,
      rep("year",4),rep("month",3),rep("year",3),
      rep("ITA",4),rep("HVR",2),rep("ITA",2),rep("ESP",2),
      rep("GSA 17",5),rep("GSA 1",2),rep("GSA 12",3),
      rep("gear 1",4),rep("gear 2",6),75,45,230,89,45,78,96,100,125,200)))

      colnames(split.test.input) <- c("species", "year", "Time.unit","country","GSA","Gear","Quantity")


      I split for many variable:



      split.res <- dlply(split.test.input,.(species),
      dlply,.(Time.unit),
      dlply,.(country),
      dlply,.(GSA),
      dlply,.(Gear))


      Now, I would like to calculate some statistical analysis (in this case sum) for each quantity of each element of a list, I extract for example the first list (list of a list of a list etc..):



      df.fromSplit <- data.frame(split.res[["a"]][["year"]][["ITA"]][["GSA 17"]][["gear 1"]][["Quantity"]])     


      colnames(df.fromSplit) <- "a,year,ITA,GSA 17,gear.1" #the name of my variables for the first list
      df.fromSplit
      a,year,ITA,GSA 17,gear.1
      1 75
      2 45
      3 230
      4 89


      I would like to calculate sum for this column:



      sum(as.numeric(levels(df.fromSplit[,1])[df.fromSplit[,1]] ))     
      439


      but it's not elegant...



      IMPORTANT




      I would like to calculate dynamically the sum for each quantity
      of each element of my list. The result could be (more or less) a data
      frame or many data frame (one for each list) as:




          combination             sum
      a,year,ITA,GSA 17,gear.1 439
      b,month,HVR,GSA.1,gear.2 78
      [...]
      and so on for each combination of list


      I thought a for loop which can extract each element of a list and it calculate the sum for the quantity of each list, but with for loop I don't know how extract each list based on variables (my experience with a list is very low)










      share|improve this question














      I have this data frame:



      split.test.input <- data.frame(matrix(ncol=7,nrow=10,
      c(rep("a",4),rep("b",4),rep("c",2),1910:1913,1902:1905,1925:1926,
      rep("year",4),rep("month",3),rep("year",3),
      rep("ITA",4),rep("HVR",2),rep("ITA",2),rep("ESP",2),
      rep("GSA 17",5),rep("GSA 1",2),rep("GSA 12",3),
      rep("gear 1",4),rep("gear 2",6),75,45,230,89,45,78,96,100,125,200)))

      colnames(split.test.input) <- c("species", "year", "Time.unit","country","GSA","Gear","Quantity")


      I split for many variable:



      split.res <- dlply(split.test.input,.(species),
      dlply,.(Time.unit),
      dlply,.(country),
      dlply,.(GSA),
      dlply,.(Gear))


      Now, I would like to calculate some statistical analysis (in this case sum) for each quantity of each element of a list, I extract for example the first list (list of a list of a list etc..):



      df.fromSplit <- data.frame(split.res[["a"]][["year"]][["ITA"]][["GSA 17"]][["gear 1"]][["Quantity"]])     


      colnames(df.fromSplit) <- "a,year,ITA,GSA 17,gear.1" #the name of my variables for the first list
      df.fromSplit
      a,year,ITA,GSA 17,gear.1
      1 75
      2 45
      3 230
      4 89


      I would like to calculate sum for this column:



      sum(as.numeric(levels(df.fromSplit[,1])[df.fromSplit[,1]] ))     
      439


      but it's not elegant...



      IMPORTANT




      I would like to calculate dynamically the sum for each quantity
      of each element of my list. The result could be (more or less) a data
      frame or many data frame (one for each list) as:




          combination             sum
      a,year,ITA,GSA 17,gear.1 439
      b,month,HVR,GSA.1,gear.2 78
      [...]
      and so on for each combination of list


      I thought a for loop which can extract each element of a list and it calculate the sum for the quantity of each list, but with for loop I don't know how extract each list based on variables (my experience with a list is very low)







      r list dataframe for-loop split






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 22 '18 at 16:11









      skyloboskylobo

      766




      766
























          3 Answers
          3






          active

          oldest

          votes


















          1














          Actually it's hard to imagine a purpose for which such a complicated object as split.res would be needed. What you are asking can be done much simpler.



          First, let's convert Quantity to numeric type (currently it's a factor).



          split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))


          Then simply



          tapply(split.test.input$Quantity, apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "), sum)
          # a, year, ITA, GSA 17, gear 1 b, month, HVR, GSA 1, gear 2
          # 439 78
          # b, month, HVR, GSA 17, gear 2 b, month, ITA, GSA 1, gear 2
          # 45 96
          # b, year, ITA, GSA 12, gear 2 c, year, ESP, GSA 12, gear 2
          # 100 325


          or



          (groups <- apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "))
          # [1] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
          # [3] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
          # [5] "b, month, HVR, GSA 17, gear 2" "b, month, HVR, GSA 1, gear 2"
          # [7] "b, month, ITA, GSA 1, gear 2" "b, year, ITA, GSA 12, gear 2"
          # [9] "c, year, ESP, GSA 12, gear 2" "c, year, ESP, GSA 12, gear 2"
          tapply(split.test.input$Quantity, groups, sum)


          Also, since you already are using dlply, you may be interested in something like



          ddply(split.test.input, .(species, Time.unit, country, GSA, Gear), summarise, Sum = sum(Quantity))
          species Time.unit country GSA Gear Sum
          # 1 a year ITA GSA 17 gear 1 439
          # 2 b month HVR GSA 1 gear 2 78
          # 3 b month HVR GSA 17 gear 2 45
          # 4 b month ITA GSA 1 gear 2 96
          # 5 b year ITA GSA 12 gear 2 100
          # 6 c year ESP GSA 12 gear 2 325





          share|improve this answer


























          • Is it works also for the presence of NA values? thank you

            – skylobo
            Nov 22 '18 at 17:02











          • @skylobo, yes, adding na.rm = TRUE after sum would do that.

            – Julius Vainora
            Nov 22 '18 at 17:04











          • Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

            – skylobo
            Nov 23 '18 at 8:57













          • @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

            – Julius Vainora
            Nov 23 '18 at 10:53



















          1














          Consider aggregate on multiple columns:



          split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))

          agg_df <- aggregate(Quantity ~ species + Time.unit + country + GSA + Gear,
          data=split.test.input, FUN=sum)

          agg_df
          # species Time.unit country GSA Gear Quantity
          # 1 a year ITA GSA 17 gear 1 439
          # 2 b month HVR GSA 1 gear 2 78
          # 3 b month ITA GSA 1 gear 2 96
          # 4 c year ESP GSA 12 gear 2 325
          # 5 b year ITA GSA 12 gear 2 100
          # 6 b month HVR GSA 17 gear 2 45


          If needing a list, run by (object-oriented wrapper to tapply) with paste(..., collapse="") for combination column:



          df_list <- by(split.test.input, split.test.input[c("species", "Time.unit", "country", "GSA", "Gear")],
          function(sub) unique(transform(sub,
          combination = paste(unique(sub[c("species", "Time.unit", "country", "GSA", "Gear")]), collapse=" "),
          sum = sum(sub$Quantity))[c("combination", "sum")])
          )
          df_list <- Filter(NROW, df_list)
          df_list

          # [[1]]
          # combination sum
          # 1 a year ITA GSA 17 gear 1 439

          # [[2]]
          # combination sum
          # 6 b month HVR GSA 1 gear 2 78

          # [[3]]
          # combination sum
          # 7 b month ITA GSA 1 gear 2 96

          # [[4]]
          # combination sum
          # 9 c year ESP GSA 12 gear 2 325

          # [[5]]
          # combination sum
          # 8 b year ITA GSA 12 gear 2 100

          # [[6]]
          # combination sum
          # 5 b month HVR GSA 17 gear 2 45





          share|improve this answer

































            0














            We could use tidyverse



            library(tidyverse)
            split.test.input %>%
            group_by_at(vars(names(.)[c(1, 3:6)])) %>%
            summarise(Quantity = sum(parse_number(Quantity)))
            # A tibble: 6 x 6
            # Groups: species, Time.unit, country, GSA [?]
            # species Time.unit country GSA Gear Quantity
            # <fct> <fct> <fct> <fct> <fct> <dbl>
            #1 a year ITA GSA 17 gear 1 439
            #2 b month HVR GSA 1 gear 2 78
            #3 b month HVR GSA 17 gear 2 45
            #4 b month ITA GSA 1 gear 2 96
            #5 b year ITA GSA 12 gear 2 100
            #6 c year ESP GSA 12 gear 2 325





            share|improve this answer























              Your Answer






              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "1"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434775%2fhow-to-calculate-dynamically-the-sum-for-each-element-of-nestled-list-in-r%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1














              Actually it's hard to imagine a purpose for which such a complicated object as split.res would be needed. What you are asking can be done much simpler.



              First, let's convert Quantity to numeric type (currently it's a factor).



              split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))


              Then simply



              tapply(split.test.input$Quantity, apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "), sum)
              # a, year, ITA, GSA 17, gear 1 b, month, HVR, GSA 1, gear 2
              # 439 78
              # b, month, HVR, GSA 17, gear 2 b, month, ITA, GSA 1, gear 2
              # 45 96
              # b, year, ITA, GSA 12, gear 2 c, year, ESP, GSA 12, gear 2
              # 100 325


              or



              (groups <- apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "))
              # [1] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [3] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [5] "b, month, HVR, GSA 17, gear 2" "b, month, HVR, GSA 1, gear 2"
              # [7] "b, month, ITA, GSA 1, gear 2" "b, year, ITA, GSA 12, gear 2"
              # [9] "c, year, ESP, GSA 12, gear 2" "c, year, ESP, GSA 12, gear 2"
              tapply(split.test.input$Quantity, groups, sum)


              Also, since you already are using dlply, you may be interested in something like



              ddply(split.test.input, .(species, Time.unit, country, GSA, Gear), summarise, Sum = sum(Quantity))
              species Time.unit country GSA Gear Sum
              # 1 a year ITA GSA 17 gear 1 439
              # 2 b month HVR GSA 1 gear 2 78
              # 3 b month HVR GSA 17 gear 2 45
              # 4 b month ITA GSA 1 gear 2 96
              # 5 b year ITA GSA 12 gear 2 100
              # 6 c year ESP GSA 12 gear 2 325





              share|improve this answer


























              • Is it works also for the presence of NA values? thank you

                – skylobo
                Nov 22 '18 at 17:02











              • @skylobo, yes, adding na.rm = TRUE after sum would do that.

                – Julius Vainora
                Nov 22 '18 at 17:04











              • Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

                – skylobo
                Nov 23 '18 at 8:57













              • @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

                – Julius Vainora
                Nov 23 '18 at 10:53
















              1














              Actually it's hard to imagine a purpose for which such a complicated object as split.res would be needed. What you are asking can be done much simpler.



              First, let's convert Quantity to numeric type (currently it's a factor).



              split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))


              Then simply



              tapply(split.test.input$Quantity, apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "), sum)
              # a, year, ITA, GSA 17, gear 1 b, month, HVR, GSA 1, gear 2
              # 439 78
              # b, month, HVR, GSA 17, gear 2 b, month, ITA, GSA 1, gear 2
              # 45 96
              # b, year, ITA, GSA 12, gear 2 c, year, ESP, GSA 12, gear 2
              # 100 325


              or



              (groups <- apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "))
              # [1] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [3] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [5] "b, month, HVR, GSA 17, gear 2" "b, month, HVR, GSA 1, gear 2"
              # [7] "b, month, ITA, GSA 1, gear 2" "b, year, ITA, GSA 12, gear 2"
              # [9] "c, year, ESP, GSA 12, gear 2" "c, year, ESP, GSA 12, gear 2"
              tapply(split.test.input$Quantity, groups, sum)


              Also, since you already are using dlply, you may be interested in something like



              ddply(split.test.input, .(species, Time.unit, country, GSA, Gear), summarise, Sum = sum(Quantity))
              species Time.unit country GSA Gear Sum
              # 1 a year ITA GSA 17 gear 1 439
              # 2 b month HVR GSA 1 gear 2 78
              # 3 b month HVR GSA 17 gear 2 45
              # 4 b month ITA GSA 1 gear 2 96
              # 5 b year ITA GSA 12 gear 2 100
              # 6 c year ESP GSA 12 gear 2 325





              share|improve this answer


























              • Is it works also for the presence of NA values? thank you

                – skylobo
                Nov 22 '18 at 17:02











              • @skylobo, yes, adding na.rm = TRUE after sum would do that.

                – Julius Vainora
                Nov 22 '18 at 17:04











              • Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

                – skylobo
                Nov 23 '18 at 8:57













              • @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

                – Julius Vainora
                Nov 23 '18 at 10:53














              1












              1








              1







              Actually it's hard to imagine a purpose for which such a complicated object as split.res would be needed. What you are asking can be done much simpler.



              First, let's convert Quantity to numeric type (currently it's a factor).



              split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))


              Then simply



              tapply(split.test.input$Quantity, apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "), sum)
              # a, year, ITA, GSA 17, gear 1 b, month, HVR, GSA 1, gear 2
              # 439 78
              # b, month, HVR, GSA 17, gear 2 b, month, ITA, GSA 1, gear 2
              # 45 96
              # b, year, ITA, GSA 12, gear 2 c, year, ESP, GSA 12, gear 2
              # 100 325


              or



              (groups <- apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "))
              # [1] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [3] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [5] "b, month, HVR, GSA 17, gear 2" "b, month, HVR, GSA 1, gear 2"
              # [7] "b, month, ITA, GSA 1, gear 2" "b, year, ITA, GSA 12, gear 2"
              # [9] "c, year, ESP, GSA 12, gear 2" "c, year, ESP, GSA 12, gear 2"
              tapply(split.test.input$Quantity, groups, sum)


              Also, since you already are using dlply, you may be interested in something like



              ddply(split.test.input, .(species, Time.unit, country, GSA, Gear), summarise, Sum = sum(Quantity))
              species Time.unit country GSA Gear Sum
              # 1 a year ITA GSA 17 gear 1 439
              # 2 b month HVR GSA 1 gear 2 78
              # 3 b month HVR GSA 17 gear 2 45
              # 4 b month ITA GSA 1 gear 2 96
              # 5 b year ITA GSA 12 gear 2 100
              # 6 c year ESP GSA 12 gear 2 325





              share|improve this answer















              Actually it's hard to imagine a purpose for which such a complicated object as split.res would be needed. What you are asking can be done much simpler.



              First, let's convert Quantity to numeric type (currently it's a factor).



              split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))


              Then simply



              tapply(split.test.input$Quantity, apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "), sum)
              # a, year, ITA, GSA 17, gear 1 b, month, HVR, GSA 1, gear 2
              # 439 78
              # b, month, HVR, GSA 17, gear 2 b, month, ITA, GSA 1, gear 2
              # 45 96
              # b, year, ITA, GSA 12, gear 2 c, year, ESP, GSA 12, gear 2
              # 100 325


              or



              (groups <- apply(split.test.input[c(1, 3:6)], 1, paste0, collapse = ", "))
              # [1] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [3] "a, year, ITA, GSA 17, gear 1" "a, year, ITA, GSA 17, gear 1"
              # [5] "b, month, HVR, GSA 17, gear 2" "b, month, HVR, GSA 1, gear 2"
              # [7] "b, month, ITA, GSA 1, gear 2" "b, year, ITA, GSA 12, gear 2"
              # [9] "c, year, ESP, GSA 12, gear 2" "c, year, ESP, GSA 12, gear 2"
              tapply(split.test.input$Quantity, groups, sum)


              Also, since you already are using dlply, you may be interested in something like



              ddply(split.test.input, .(species, Time.unit, country, GSA, Gear), summarise, Sum = sum(Quantity))
              species Time.unit country GSA Gear Sum
              # 1 a year ITA GSA 17 gear 1 439
              # 2 b month HVR GSA 1 gear 2 78
              # 3 b month HVR GSA 17 gear 2 45
              # 4 b month ITA GSA 1 gear 2 96
              # 5 b year ITA GSA 12 gear 2 100
              # 6 c year ESP GSA 12 gear 2 325






              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Nov 22 '18 at 17:23

























              answered Nov 22 '18 at 16:30









              Julius VainoraJulius Vainora

              36k76380




              36k76380













              • Is it works also for the presence of NA values? thank you

                – skylobo
                Nov 22 '18 at 17:02











              • @skylobo, yes, adding na.rm = TRUE after sum would do that.

                – Julius Vainora
                Nov 22 '18 at 17:04











              • Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

                – skylobo
                Nov 23 '18 at 8:57













              • @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

                – Julius Vainora
                Nov 23 '18 at 10:53



















              • Is it works also for the presence of NA values? thank you

                – skylobo
                Nov 22 '18 at 17:02











              • @skylobo, yes, adding na.rm = TRUE after sum would do that.

                – Julius Vainora
                Nov 22 '18 at 17:04











              • Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

                – skylobo
                Nov 23 '18 at 8:57













              • @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

                – Julius Vainora
                Nov 23 '18 at 10:53

















              Is it works also for the presence of NA values? thank you

              – skylobo
              Nov 22 '18 at 17:02





              Is it works also for the presence of NA values? thank you

              – skylobo
              Nov 22 '18 at 17:02













              @skylobo, yes, adding na.rm = TRUE after sum would do that.

              – Julius Vainora
              Nov 22 '18 at 17:04





              @skylobo, yes, adding na.rm = TRUE after sum would do that.

              – Julius Vainora
              Nov 22 '18 at 17:04













              Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

              – skylobo
              Nov 23 '18 at 8:57







              Thank you. I don't understand the difference between tapply and aggregate, I think that the results are different. In my case (my true df) tapply is correct

              – skylobo
              Nov 23 '18 at 8:57















              @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

              – Julius Vainora
              Nov 23 '18 at 10:53





              @skylobo, in our examples now the only difference is that I got a vector with tapply, and aggregate gave a data frame. If you get different results, perhaps there is something about variable names or indices (c(1, 3:6) in my case).

              – Julius Vainora
              Nov 23 '18 at 10:53













              1














              Consider aggregate on multiple columns:



              split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))

              agg_df <- aggregate(Quantity ~ species + Time.unit + country + GSA + Gear,
              data=split.test.input, FUN=sum)

              agg_df
              # species Time.unit country GSA Gear Quantity
              # 1 a year ITA GSA 17 gear 1 439
              # 2 b month HVR GSA 1 gear 2 78
              # 3 b month ITA GSA 1 gear 2 96
              # 4 c year ESP GSA 12 gear 2 325
              # 5 b year ITA GSA 12 gear 2 100
              # 6 b month HVR GSA 17 gear 2 45


              If needing a list, run by (object-oriented wrapper to tapply) with paste(..., collapse="") for combination column:



              df_list <- by(split.test.input, split.test.input[c("species", "Time.unit", "country", "GSA", "Gear")],
              function(sub) unique(transform(sub,
              combination = paste(unique(sub[c("species", "Time.unit", "country", "GSA", "Gear")]), collapse=" "),
              sum = sum(sub$Quantity))[c("combination", "sum")])
              )
              df_list <- Filter(NROW, df_list)
              df_list

              # [[1]]
              # combination sum
              # 1 a year ITA GSA 17 gear 1 439

              # [[2]]
              # combination sum
              # 6 b month HVR GSA 1 gear 2 78

              # [[3]]
              # combination sum
              # 7 b month ITA GSA 1 gear 2 96

              # [[4]]
              # combination sum
              # 9 c year ESP GSA 12 gear 2 325

              # [[5]]
              # combination sum
              # 8 b year ITA GSA 12 gear 2 100

              # [[6]]
              # combination sum
              # 5 b month HVR GSA 17 gear 2 45





              share|improve this answer






























                1














                Consider aggregate on multiple columns:



                split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))

                agg_df <- aggregate(Quantity ~ species + Time.unit + country + GSA + Gear,
                data=split.test.input, FUN=sum)

                agg_df
                # species Time.unit country GSA Gear Quantity
                # 1 a year ITA GSA 17 gear 1 439
                # 2 b month HVR GSA 1 gear 2 78
                # 3 b month ITA GSA 1 gear 2 96
                # 4 c year ESP GSA 12 gear 2 325
                # 5 b year ITA GSA 12 gear 2 100
                # 6 b month HVR GSA 17 gear 2 45


                If needing a list, run by (object-oriented wrapper to tapply) with paste(..., collapse="") for combination column:



                df_list <- by(split.test.input, split.test.input[c("species", "Time.unit", "country", "GSA", "Gear")],
                function(sub) unique(transform(sub,
                combination = paste(unique(sub[c("species", "Time.unit", "country", "GSA", "Gear")]), collapse=" "),
                sum = sum(sub$Quantity))[c("combination", "sum")])
                )
                df_list <- Filter(NROW, df_list)
                df_list

                # [[1]]
                # combination sum
                # 1 a year ITA GSA 17 gear 1 439

                # [[2]]
                # combination sum
                # 6 b month HVR GSA 1 gear 2 78

                # [[3]]
                # combination sum
                # 7 b month ITA GSA 1 gear 2 96

                # [[4]]
                # combination sum
                # 9 c year ESP GSA 12 gear 2 325

                # [[5]]
                # combination sum
                # 8 b year ITA GSA 12 gear 2 100

                # [[6]]
                # combination sum
                # 5 b month HVR GSA 17 gear 2 45





                share|improve this answer




























                  1












                  1








                  1







                  Consider aggregate on multiple columns:



                  split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))

                  agg_df <- aggregate(Quantity ~ species + Time.unit + country + GSA + Gear,
                  data=split.test.input, FUN=sum)

                  agg_df
                  # species Time.unit country GSA Gear Quantity
                  # 1 a year ITA GSA 17 gear 1 439
                  # 2 b month HVR GSA 1 gear 2 78
                  # 3 b month ITA GSA 1 gear 2 96
                  # 4 c year ESP GSA 12 gear 2 325
                  # 5 b year ITA GSA 12 gear 2 100
                  # 6 b month HVR GSA 17 gear 2 45


                  If needing a list, run by (object-oriented wrapper to tapply) with paste(..., collapse="") for combination column:



                  df_list <- by(split.test.input, split.test.input[c("species", "Time.unit", "country", "GSA", "Gear")],
                  function(sub) unique(transform(sub,
                  combination = paste(unique(sub[c("species", "Time.unit", "country", "GSA", "Gear")]), collapse=" "),
                  sum = sum(sub$Quantity))[c("combination", "sum")])
                  )
                  df_list <- Filter(NROW, df_list)
                  df_list

                  # [[1]]
                  # combination sum
                  # 1 a year ITA GSA 17 gear 1 439

                  # [[2]]
                  # combination sum
                  # 6 b month HVR GSA 1 gear 2 78

                  # [[3]]
                  # combination sum
                  # 7 b month ITA GSA 1 gear 2 96

                  # [[4]]
                  # combination sum
                  # 9 c year ESP GSA 12 gear 2 325

                  # [[5]]
                  # combination sum
                  # 8 b year ITA GSA 12 gear 2 100

                  # [[6]]
                  # combination sum
                  # 5 b month HVR GSA 17 gear 2 45





                  share|improve this answer















                  Consider aggregate on multiple columns:



                  split.test.input$Quantity <- as.numeric(as.character(split.test.input$Quantity))

                  agg_df <- aggregate(Quantity ~ species + Time.unit + country + GSA + Gear,
                  data=split.test.input, FUN=sum)

                  agg_df
                  # species Time.unit country GSA Gear Quantity
                  # 1 a year ITA GSA 17 gear 1 439
                  # 2 b month HVR GSA 1 gear 2 78
                  # 3 b month ITA GSA 1 gear 2 96
                  # 4 c year ESP GSA 12 gear 2 325
                  # 5 b year ITA GSA 12 gear 2 100
                  # 6 b month HVR GSA 17 gear 2 45


                  If needing a list, run by (object-oriented wrapper to tapply) with paste(..., collapse="") for combination column:



                  df_list <- by(split.test.input, split.test.input[c("species", "Time.unit", "country", "GSA", "Gear")],
                  function(sub) unique(transform(sub,
                  combination = paste(unique(sub[c("species", "Time.unit", "country", "GSA", "Gear")]), collapse=" "),
                  sum = sum(sub$Quantity))[c("combination", "sum")])
                  )
                  df_list <- Filter(NROW, df_list)
                  df_list

                  # [[1]]
                  # combination sum
                  # 1 a year ITA GSA 17 gear 1 439

                  # [[2]]
                  # combination sum
                  # 6 b month HVR GSA 1 gear 2 78

                  # [[3]]
                  # combination sum
                  # 7 b month ITA GSA 1 gear 2 96

                  # [[4]]
                  # combination sum
                  # 9 c year ESP GSA 12 gear 2 325

                  # [[5]]
                  # combination sum
                  # 8 b year ITA GSA 12 gear 2 100

                  # [[6]]
                  # combination sum
                  # 5 b month HVR GSA 17 gear 2 45






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Nov 22 '18 at 16:37

























                  answered Nov 22 '18 at 16:30









                  ParfaitParfait

                  51k84270




                  51k84270























                      0














                      We could use tidyverse



                      library(tidyverse)
                      split.test.input %>%
                      group_by_at(vars(names(.)[c(1, 3:6)])) %>%
                      summarise(Quantity = sum(parse_number(Quantity)))
                      # A tibble: 6 x 6
                      # Groups: species, Time.unit, country, GSA [?]
                      # species Time.unit country GSA Gear Quantity
                      # <fct> <fct> <fct> <fct> <fct> <dbl>
                      #1 a year ITA GSA 17 gear 1 439
                      #2 b month HVR GSA 1 gear 2 78
                      #3 b month HVR GSA 17 gear 2 45
                      #4 b month ITA GSA 1 gear 2 96
                      #5 b year ITA GSA 12 gear 2 100
                      #6 c year ESP GSA 12 gear 2 325





                      share|improve this answer




























                        0














                        We could use tidyverse



                        library(tidyverse)
                        split.test.input %>%
                        group_by_at(vars(names(.)[c(1, 3:6)])) %>%
                        summarise(Quantity = sum(parse_number(Quantity)))
                        # A tibble: 6 x 6
                        # Groups: species, Time.unit, country, GSA [?]
                        # species Time.unit country GSA Gear Quantity
                        # <fct> <fct> <fct> <fct> <fct> <dbl>
                        #1 a year ITA GSA 17 gear 1 439
                        #2 b month HVR GSA 1 gear 2 78
                        #3 b month HVR GSA 17 gear 2 45
                        #4 b month ITA GSA 1 gear 2 96
                        #5 b year ITA GSA 12 gear 2 100
                        #6 c year ESP GSA 12 gear 2 325





                        share|improve this answer


























                          0












                          0








                          0







                          We could use tidyverse



                          library(tidyverse)
                          split.test.input %>%
                          group_by_at(vars(names(.)[c(1, 3:6)])) %>%
                          summarise(Quantity = sum(parse_number(Quantity)))
                          # A tibble: 6 x 6
                          # Groups: species, Time.unit, country, GSA [?]
                          # species Time.unit country GSA Gear Quantity
                          # <fct> <fct> <fct> <fct> <fct> <dbl>
                          #1 a year ITA GSA 17 gear 1 439
                          #2 b month HVR GSA 1 gear 2 78
                          #3 b month HVR GSA 17 gear 2 45
                          #4 b month ITA GSA 1 gear 2 96
                          #5 b year ITA GSA 12 gear 2 100
                          #6 c year ESP GSA 12 gear 2 325





                          share|improve this answer













                          We could use tidyverse



                          library(tidyverse)
                          split.test.input %>%
                          group_by_at(vars(names(.)[c(1, 3:6)])) %>%
                          summarise(Quantity = sum(parse_number(Quantity)))
                          # A tibble: 6 x 6
                          # Groups: species, Time.unit, country, GSA [?]
                          # species Time.unit country GSA Gear Quantity
                          # <fct> <fct> <fct> <fct> <fct> <dbl>
                          #1 a year ITA GSA 17 gear 1 439
                          #2 b month HVR GSA 1 gear 2 78
                          #3 b month HVR GSA 17 gear 2 45
                          #4 b month ITA GSA 1 gear 2 96
                          #5 b year ITA GSA 12 gear 2 100
                          #6 c year ESP GSA 12 gear 2 325






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Nov 22 '18 at 17:11









                          akrunakrun

                          404k13196269




                          404k13196269






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434775%2fhow-to-calculate-dynamically-the-sum-for-each-element-of-nestled-list-in-r%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen