Regular simpsons rule in numerical methods
In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: sin(x),0,pi/2,100))
which gives the output:
291.6666666666667
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-40325ae966e9> in <module>()
1 print(simps(lambda x:x**2, 5, 10, 100))
----> 2 print(simps(lambda x: sin(x),0,pi/2,100))
<ipython-input-142-860ce9822b06> in simps(f, a, b, N)
3 dx = (b-a)/N
4 x = np.linspace(a,b,N+1)
----> 5 y = f(x)
6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
7 return S
<ipython-input-143-40325ae966e9> in <lambda>(x)
1 print(simps(lambda x:x**2, 5, 10, 100))
---->2 print(simps(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
add a comment |
In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: sin(x),0,pi/2,100))
which gives the output:
291.6666666666667
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-40325ae966e9> in <module>()
1 print(simps(lambda x:x**2, 5, 10, 100))
----> 2 print(simps(lambda x: sin(x),0,pi/2,100))
<ipython-input-142-860ce9822b06> in simps(f, a, b, N)
3 dx = (b-a)/N
4 x = np.linspace(a,b,N+1)
----> 5 y = f(x)
6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
7 return S
<ipython-input-143-40325ae966e9> in <lambda>(x)
1 print(simps(lambda x:x**2, 5, 10, 100))
---->2 print(simps(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
add a comment |
In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: sin(x),0,pi/2,100))
which gives the output:
291.6666666666667
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-40325ae966e9> in <module>()
1 print(simps(lambda x:x**2, 5, 10, 100))
----> 2 print(simps(lambda x: sin(x),0,pi/2,100))
<ipython-input-142-860ce9822b06> in simps(f, a, b, N)
3 dx = (b-a)/N
4 x = np.linspace(a,b,N+1)
----> 5 y = f(x)
6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
7 return S
<ipython-input-143-40325ae966e9> in <lambda>(x)
1 print(simps(lambda x:x**2, 5, 10, 100))
---->2 print(simps(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
In the following code I have implemented simpsons rule. It is working correctly for my first function but for my second function I am getting an error.
So,
Is it possible to do this code without using np.linspace? and if not how do I fix it so my second function works?
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: sin(x),0,pi/2,100))
which gives the output:
291.6666666666667
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-143-40325ae966e9> in <module>()
1 print(simps(lambda x:x**2, 5, 10, 100))
----> 2 print(simps(lambda x: sin(x),0,pi/2,100))
<ipython-input-142-860ce9822b06> in simps(f, a, b, N)
3 dx = (b-a)/N
4 x = np.linspace(a,b,N+1)
----> 5 y = f(x)
6 S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
7 return S
<ipython-input-143-40325ae966e9> in <lambda>(x)
1 print(simps(lambda x:x**2, 5, 10, 100))
---->2 print(simps(lambda x: sin(x),0,pi/2,100))
TypeError: only size-1 arrays can be converted to Python scalars
numerical-methods
numerical-methods
asked Dec 4 '18 at 2:04
fr14fr14
38318
38318
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
linspace
is a very useful function to generate uniformly separated points. Remember to use function from numpy
to efficiently map operations on arrays
import numpy as np
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: np.sin(x),0,np.pi/2,100))
With result
291.6666666666667
1.000000000338236
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025026%2fregular-simpsons-rule-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
linspace
is a very useful function to generate uniformly separated points. Remember to use function from numpy
to efficiently map operations on arrays
import numpy as np
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: np.sin(x),0,np.pi/2,100))
With result
291.6666666666667
1.000000000338236
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
add a comment |
linspace
is a very useful function to generate uniformly separated points. Remember to use function from numpy
to efficiently map operations on arrays
import numpy as np
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: np.sin(x),0,np.pi/2,100))
With result
291.6666666666667
1.000000000338236
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
add a comment |
linspace
is a very useful function to generate uniformly separated points. Remember to use function from numpy
to efficiently map operations on arrays
import numpy as np
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: np.sin(x),0,np.pi/2,100))
With result
291.6666666666667
1.000000000338236
linspace
is a very useful function to generate uniformly separated points. Remember to use function from numpy
to efficiently map operations on arrays
import numpy as np
def simps(f,a,b,N):
dx = (b-a)/N
x = np.linspace(a,b,N+1)
y = f(x)
S = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])
return S
print(simps(lambda x:x**2, 5, 10, 100))
print(simps(lambda x: np.sin(x),0,np.pi/2,100))
With result
291.6666666666667
1.000000000338236
answered Dec 4 '18 at 2:07
caveraccaverac
14k21130
14k21130
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
add a comment |
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
you have all the answers to my problems haha I appreciate it!
– fr14
Dec 4 '18 at 2:09
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
@fr14 Glad I could help
– caverac
Dec 4 '18 at 2:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025026%2fregular-simpsons-rule-in-numerical-methods%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown