Show that $frac {a_1^2}{a_2}+frac {a_2^2}{a_3}+…+frac {a_n^2}{a_1}geq a_1+a_2+…+a_n$ using AM-GM....












4












$begingroup$



Given $a_1,a_2,...,a_n$ be positive reals. Show that $displaystylefrac {a_1^2}{a_2}+frac {a_2^2}{a_3}+...+frac {a_n^2}{a_1}geq a_1+a_2+...+a_n$ using AM-GM.




I know how to slve it using rearrangement inequality, but I can't. How should I apply AM-GM? Thanks.










share|cite|improve this question









$endgroup$



closed as off-topic by Carl Mummert, Brahadeesh, user21820, amWhy, Did Dec 11 '18 at 19:22


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Carl Mummert, Brahadeesh, user21820, amWhy, Did

If this question can be reworded to fit the rules in the help center, please edit the question.


















    4












    $begingroup$



    Given $a_1,a_2,...,a_n$ be positive reals. Show that $displaystylefrac {a_1^2}{a_2}+frac {a_2^2}{a_3}+...+frac {a_n^2}{a_1}geq a_1+a_2+...+a_n$ using AM-GM.




    I know how to slve it using rearrangement inequality, but I can't. How should I apply AM-GM? Thanks.










    share|cite|improve this question









    $endgroup$



    closed as off-topic by Carl Mummert, Brahadeesh, user21820, amWhy, Did Dec 11 '18 at 19:22


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Carl Mummert, Brahadeesh, user21820, amWhy, Did

    If this question can be reworded to fit the rules in the help center, please edit the question.
















      4












      4








      4


      5



      $begingroup$



      Given $a_1,a_2,...,a_n$ be positive reals. Show that $displaystylefrac {a_1^2}{a_2}+frac {a_2^2}{a_3}+...+frac {a_n^2}{a_1}geq a_1+a_2+...+a_n$ using AM-GM.




      I know how to slve it using rearrangement inequality, but I can't. How should I apply AM-GM? Thanks.










      share|cite|improve this question









      $endgroup$





      Given $a_1,a_2,...,a_n$ be positive reals. Show that $displaystylefrac {a_1^2}{a_2}+frac {a_2^2}{a_3}+...+frac {a_n^2}{a_1}geq a_1+a_2+...+a_n$ using AM-GM.




      I know how to slve it using rearrangement inequality, but I can't. How should I apply AM-GM? Thanks.







      inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked May 16 '13 at 12:44









      A. ChuA. Chu

      6,99083283




      6,99083283




      closed as off-topic by Carl Mummert, Brahadeesh, user21820, amWhy, Did Dec 11 '18 at 19:22


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Carl Mummert, Brahadeesh, user21820, amWhy, Did

      If this question can be reworded to fit the rules in the help center, please edit the question.




      closed as off-topic by Carl Mummert, Brahadeesh, user21820, amWhy, Did Dec 11 '18 at 19:22


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Carl Mummert, Brahadeesh, user21820, amWhy, Did

      If this question can be reworded to fit the rules in the help center, please edit the question.






















          2 Answers
          2






          active

          oldest

          votes


















          23












          $begingroup$

          $$dfrac{a^2_{1}}{a_{2}}+a_{2}ge 2a_{1}$$
          $$dfrac{a^2_{2}}{a_{3}}+a_{3}ge 2a_{2}$$
          $$cdotscdots$$
          $$dfrac{a^2_{n}}{a_{1}}+a_{1}ge 2a_{n}$$



          add all inequalities and you're done!






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
            $endgroup$
            – math110
            May 16 '13 at 12:56








          • 1




            $begingroup$
            use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
            $endgroup$
            – math110
            May 16 '13 at 13:00










          • $begingroup$
            Nice. What do you mean by "and all equality"?
            $endgroup$
            – Julien
            May 16 '13 at 13:32










          • $begingroup$
            Thank you, I mean add,@julien
            $endgroup$
            – math110
            May 16 '13 at 13:45



















          5












          $begingroup$

          other nice methods
          $$Longleftrightarrow left(dfrac{a^2_{1}}{a_{2}}-2a_{1}+a_{2}right)+left(dfrac{a^2_{2}}{a_{3}}-2a_{2}+a_{3}right)+cdots+left(dfrac{a^2_{n}}{a_{1}}-2a_{n}+a_{1}right)ge 0$$
          $$Longleftrightarrow left(dfrac{a_{1}}{sqrt{a_{2}}}-sqrt{a_{2}}right)^2+cdots+left(dfrac{a_{n}}{sqrt{a_{1}}}-sqrt{a_{1}}right)^2ge 0$$






          share|cite|improve this answer









          $endgroup$




















            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            23












            $begingroup$

            $$dfrac{a^2_{1}}{a_{2}}+a_{2}ge 2a_{1}$$
            $$dfrac{a^2_{2}}{a_{3}}+a_{3}ge 2a_{2}$$
            $$cdotscdots$$
            $$dfrac{a^2_{n}}{a_{1}}+a_{1}ge 2a_{n}$$



            add all inequalities and you're done!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
              $endgroup$
              – math110
              May 16 '13 at 12:56








            • 1




              $begingroup$
              use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
              $endgroup$
              – math110
              May 16 '13 at 13:00










            • $begingroup$
              Nice. What do you mean by "and all equality"?
              $endgroup$
              – Julien
              May 16 '13 at 13:32










            • $begingroup$
              Thank you, I mean add,@julien
              $endgroup$
              – math110
              May 16 '13 at 13:45
















            23












            $begingroup$

            $$dfrac{a^2_{1}}{a_{2}}+a_{2}ge 2a_{1}$$
            $$dfrac{a^2_{2}}{a_{3}}+a_{3}ge 2a_{2}$$
            $$cdotscdots$$
            $$dfrac{a^2_{n}}{a_{1}}+a_{1}ge 2a_{n}$$



            add all inequalities and you're done!






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
              $endgroup$
              – math110
              May 16 '13 at 12:56








            • 1




              $begingroup$
              use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
              $endgroup$
              – math110
              May 16 '13 at 13:00










            • $begingroup$
              Nice. What do you mean by "and all equality"?
              $endgroup$
              – Julien
              May 16 '13 at 13:32










            • $begingroup$
              Thank you, I mean add,@julien
              $endgroup$
              – math110
              May 16 '13 at 13:45














            23












            23








            23





            $begingroup$

            $$dfrac{a^2_{1}}{a_{2}}+a_{2}ge 2a_{1}$$
            $$dfrac{a^2_{2}}{a_{3}}+a_{3}ge 2a_{2}$$
            $$cdotscdots$$
            $$dfrac{a^2_{n}}{a_{1}}+a_{1}ge 2a_{n}$$



            add all inequalities and you're done!






            share|cite|improve this answer











            $endgroup$



            $$dfrac{a^2_{1}}{a_{2}}+a_{2}ge 2a_{1}$$
            $$dfrac{a^2_{2}}{a_{3}}+a_{3}ge 2a_{2}$$
            $$cdotscdots$$
            $$dfrac{a^2_{n}}{a_{1}}+a_{1}ge 2a_{n}$$



            add all inequalities and you're done!







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 10 '13 at 15:47









            dajoker

            1,884920




            1,884920










            answered May 16 '13 at 12:56









            math110math110

            32.5k457217




            32.5k457217












            • $begingroup$
              and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
              $endgroup$
              – math110
              May 16 '13 at 12:56








            • 1




              $begingroup$
              use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
              $endgroup$
              – math110
              May 16 '13 at 13:00










            • $begingroup$
              Nice. What do you mean by "and all equality"?
              $endgroup$
              – Julien
              May 16 '13 at 13:32










            • $begingroup$
              Thank you, I mean add,@julien
              $endgroup$
              – math110
              May 16 '13 at 13:45


















            • $begingroup$
              and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
              $endgroup$
              – math110
              May 16 '13 at 12:56








            • 1




              $begingroup$
              use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
              $endgroup$
              – math110
              May 16 '13 at 13:00










            • $begingroup$
              Nice. What do you mean by "and all equality"?
              $endgroup$
              – Julien
              May 16 '13 at 13:32










            • $begingroup$
              Thank you, I mean add,@julien
              $endgroup$
              – math110
              May 16 '13 at 13:45
















            $begingroup$
            and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
            $endgroup$
            – math110
            May 16 '13 at 12:56






            $begingroup$
            and this equality can use by Cauchy-Schwarz inequality.and have other nice methods,Thank you
            $endgroup$
            – math110
            May 16 '13 at 12:56






            1




            1




            $begingroup$
            use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
            $endgroup$
            – math110
            May 16 '13 at 13:00




            $begingroup$
            use this cauchy-Schwarz $$left(dfrac{a^2_{1}}{a_{2}}+dfrac{a^2_{2}}{a_{3}}+cdots+dfrac{a^2_{n}}{a_{1}}right)(a_{2}+a_{3}+cdots+a_{n}+a_{1})ge (a_{1}+a_{2}+cdots+a_{n})^2$$
            $endgroup$
            – math110
            May 16 '13 at 13:00












            $begingroup$
            Nice. What do you mean by "and all equality"?
            $endgroup$
            – Julien
            May 16 '13 at 13:32




            $begingroup$
            Nice. What do you mean by "and all equality"?
            $endgroup$
            – Julien
            May 16 '13 at 13:32












            $begingroup$
            Thank you, I mean add,@julien
            $endgroup$
            – math110
            May 16 '13 at 13:45




            $begingroup$
            Thank you, I mean add,@julien
            $endgroup$
            – math110
            May 16 '13 at 13:45











            5












            $begingroup$

            other nice methods
            $$Longleftrightarrow left(dfrac{a^2_{1}}{a_{2}}-2a_{1}+a_{2}right)+left(dfrac{a^2_{2}}{a_{3}}-2a_{2}+a_{3}right)+cdots+left(dfrac{a^2_{n}}{a_{1}}-2a_{n}+a_{1}right)ge 0$$
            $$Longleftrightarrow left(dfrac{a_{1}}{sqrt{a_{2}}}-sqrt{a_{2}}right)^2+cdots+left(dfrac{a_{n}}{sqrt{a_{1}}}-sqrt{a_{1}}right)^2ge 0$$






            share|cite|improve this answer









            $endgroup$


















              5












              $begingroup$

              other nice methods
              $$Longleftrightarrow left(dfrac{a^2_{1}}{a_{2}}-2a_{1}+a_{2}right)+left(dfrac{a^2_{2}}{a_{3}}-2a_{2}+a_{3}right)+cdots+left(dfrac{a^2_{n}}{a_{1}}-2a_{n}+a_{1}right)ge 0$$
              $$Longleftrightarrow left(dfrac{a_{1}}{sqrt{a_{2}}}-sqrt{a_{2}}right)^2+cdots+left(dfrac{a_{n}}{sqrt{a_{1}}}-sqrt{a_{1}}right)^2ge 0$$






              share|cite|improve this answer









              $endgroup$
















                5












                5








                5





                $begingroup$

                other nice methods
                $$Longleftrightarrow left(dfrac{a^2_{1}}{a_{2}}-2a_{1}+a_{2}right)+left(dfrac{a^2_{2}}{a_{3}}-2a_{2}+a_{3}right)+cdots+left(dfrac{a^2_{n}}{a_{1}}-2a_{n}+a_{1}right)ge 0$$
                $$Longleftrightarrow left(dfrac{a_{1}}{sqrt{a_{2}}}-sqrt{a_{2}}right)^2+cdots+left(dfrac{a_{n}}{sqrt{a_{1}}}-sqrt{a_{1}}right)^2ge 0$$






                share|cite|improve this answer









                $endgroup$



                other nice methods
                $$Longleftrightarrow left(dfrac{a^2_{1}}{a_{2}}-2a_{1}+a_{2}right)+left(dfrac{a^2_{2}}{a_{3}}-2a_{2}+a_{3}right)+cdots+left(dfrac{a^2_{n}}{a_{1}}-2a_{n}+a_{1}right)ge 0$$
                $$Longleftrightarrow left(dfrac{a_{1}}{sqrt{a_{2}}}-sqrt{a_{2}}right)^2+cdots+left(dfrac{a_{n}}{sqrt{a_{1}}}-sqrt{a_{1}}right)^2ge 0$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered May 16 '13 at 13:09









                math110math110

                32.5k457217




                32.5k457217















                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen