Solution verification: evaluate $limlimits_{n to infty}frac{1^{lambda n}+2^{lambda n}+cdots+n^{lambda...












6












$begingroup$


Problem



Evaluate
$$lim_{n to infty}frac{1^{lambda n}+2^{lambda n}+cdots+n^{lambda n}}{n^{lambda n}}$$
where $lambda>0.$



Solution



Denote
$$S_n:=sum_{k=1}^{n}left(frac{k}{n}right)^{lambda n}=sum_{k=0}^{n-1}left(1-frac{k}{n}right)^{lambda n}.tag1$$



On one hand, we choose some $pin mathbb{N+}$, fix it, and let $n>p+1$. Then
$$S_n geq sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}.tag2$$
Let $n to infty$ within $(2)$. We obtain
$$liminf_{n to infty}S_ngeq liminf_{n to infty} sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}liminf_{n to infty}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}e^{-lambda k}.tag3$$
Notice that $(3)$ holds for all $p$. We may let $p to infty$ and obtain
$$liminf_{n to infty}S_ngeq sum_{k=0}^{infty}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag4$$



On the other hand, from $1+xleq e^x$ we may derive
$left(1-dfrac{k}{n}right)^{lambda n}leq e^{-lambda k}.$
Thus
$$S_n leq sum_{k=0}^{n-1}e^{-lambda k}.tag5$$
Let $n to infty$ within $(5)$. We obtain
$$limsup_{n to infty}S_n leq limsup_{n to infty}sum_{k=0}^{n-1}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag6$$
See $(4)$ and $(6)$. We may conclude
$$frac{e^{lambda}}{e^{lambda}-1}leq liminf_{n to infty}S_nleq limsup_{n to infty}S_nleq frac{e^{lambda}}{e^{lambda}-1},tag7$$
which implies
$$lim_{n to infty}S_n=frac{e^{lambda}}{e^{lambda}-1}.tag8$$



Please correct me if I'm wrong. Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, it's correct.
    $endgroup$
    – maridia
    Dec 7 '18 at 4:35
















6












$begingroup$


Problem



Evaluate
$$lim_{n to infty}frac{1^{lambda n}+2^{lambda n}+cdots+n^{lambda n}}{n^{lambda n}}$$
where $lambda>0.$



Solution



Denote
$$S_n:=sum_{k=1}^{n}left(frac{k}{n}right)^{lambda n}=sum_{k=0}^{n-1}left(1-frac{k}{n}right)^{lambda n}.tag1$$



On one hand, we choose some $pin mathbb{N+}$, fix it, and let $n>p+1$. Then
$$S_n geq sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}.tag2$$
Let $n to infty$ within $(2)$. We obtain
$$liminf_{n to infty}S_ngeq liminf_{n to infty} sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}liminf_{n to infty}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}e^{-lambda k}.tag3$$
Notice that $(3)$ holds for all $p$. We may let $p to infty$ and obtain
$$liminf_{n to infty}S_ngeq sum_{k=0}^{infty}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag4$$



On the other hand, from $1+xleq e^x$ we may derive
$left(1-dfrac{k}{n}right)^{lambda n}leq e^{-lambda k}.$
Thus
$$S_n leq sum_{k=0}^{n-1}e^{-lambda k}.tag5$$
Let $n to infty$ within $(5)$. We obtain
$$limsup_{n to infty}S_n leq limsup_{n to infty}sum_{k=0}^{n-1}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag6$$
See $(4)$ and $(6)$. We may conclude
$$frac{e^{lambda}}{e^{lambda}-1}leq liminf_{n to infty}S_nleq limsup_{n to infty}S_nleq frac{e^{lambda}}{e^{lambda}-1},tag7$$
which implies
$$lim_{n to infty}S_n=frac{e^{lambda}}{e^{lambda}-1}.tag8$$



Please correct me if I'm wrong. Thanks.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Yes, it's correct.
    $endgroup$
    – maridia
    Dec 7 '18 at 4:35














6












6








6


1



$begingroup$


Problem



Evaluate
$$lim_{n to infty}frac{1^{lambda n}+2^{lambda n}+cdots+n^{lambda n}}{n^{lambda n}}$$
where $lambda>0.$



Solution



Denote
$$S_n:=sum_{k=1}^{n}left(frac{k}{n}right)^{lambda n}=sum_{k=0}^{n-1}left(1-frac{k}{n}right)^{lambda n}.tag1$$



On one hand, we choose some $pin mathbb{N+}$, fix it, and let $n>p+1$. Then
$$S_n geq sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}.tag2$$
Let $n to infty$ within $(2)$. We obtain
$$liminf_{n to infty}S_ngeq liminf_{n to infty} sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}liminf_{n to infty}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}e^{-lambda k}.tag3$$
Notice that $(3)$ holds for all $p$. We may let $p to infty$ and obtain
$$liminf_{n to infty}S_ngeq sum_{k=0}^{infty}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag4$$



On the other hand, from $1+xleq e^x$ we may derive
$left(1-dfrac{k}{n}right)^{lambda n}leq e^{-lambda k}.$
Thus
$$S_n leq sum_{k=0}^{n-1}e^{-lambda k}.tag5$$
Let $n to infty$ within $(5)$. We obtain
$$limsup_{n to infty}S_n leq limsup_{n to infty}sum_{k=0}^{n-1}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag6$$
See $(4)$ and $(6)$. We may conclude
$$frac{e^{lambda}}{e^{lambda}-1}leq liminf_{n to infty}S_nleq limsup_{n to infty}S_nleq frac{e^{lambda}}{e^{lambda}-1},tag7$$
which implies
$$lim_{n to infty}S_n=frac{e^{lambda}}{e^{lambda}-1}.tag8$$



Please correct me if I'm wrong. Thanks.










share|cite|improve this question











$endgroup$




Problem



Evaluate
$$lim_{n to infty}frac{1^{lambda n}+2^{lambda n}+cdots+n^{lambda n}}{n^{lambda n}}$$
where $lambda>0.$



Solution



Denote
$$S_n:=sum_{k=1}^{n}left(frac{k}{n}right)^{lambda n}=sum_{k=0}^{n-1}left(1-frac{k}{n}right)^{lambda n}.tag1$$



On one hand, we choose some $pin mathbb{N+}$, fix it, and let $n>p+1$. Then
$$S_n geq sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}.tag2$$
Let $n to infty$ within $(2)$. We obtain
$$liminf_{n to infty}S_ngeq liminf_{n to infty} sum_{k=0}^{p}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}liminf_{n to infty}left(1-frac{k}{n}right)^{lambda n}=sum_{k=0}^{p}e^{-lambda k}.tag3$$
Notice that $(3)$ holds for all $p$. We may let $p to infty$ and obtain
$$liminf_{n to infty}S_ngeq sum_{k=0}^{infty}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag4$$



On the other hand, from $1+xleq e^x$ we may derive
$left(1-dfrac{k}{n}right)^{lambda n}leq e^{-lambda k}.$
Thus
$$S_n leq sum_{k=0}^{n-1}e^{-lambda k}.tag5$$
Let $n to infty$ within $(5)$. We obtain
$$limsup_{n to infty}S_n leq limsup_{n to infty}sum_{k=0}^{n-1}e^{-lambda k}=frac{e^{lambda}}{e^{lambda}-1}.tag6$$
See $(4)$ and $(6)$. We may conclude
$$frac{e^{lambda}}{e^{lambda}-1}leq liminf_{n to infty}S_nleq limsup_{n to infty}S_nleq frac{e^{lambda}}{e^{lambda}-1},tag7$$
which implies
$$lim_{n to infty}S_n=frac{e^{lambda}}{e^{lambda}-1}.tag8$$



Please correct me if I'm wrong. Thanks.







limits proof-verification limsup-and-liminf






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 13:22







mengdie1982

















asked Dec 7 '18 at 4:22









mengdie1982mengdie1982

4,907618




4,907618












  • $begingroup$
    Yes, it's correct.
    $endgroup$
    – maridia
    Dec 7 '18 at 4:35


















  • $begingroup$
    Yes, it's correct.
    $endgroup$
    – maridia
    Dec 7 '18 at 4:35
















$begingroup$
Yes, it's correct.
$endgroup$
– maridia
Dec 7 '18 at 4:35




$begingroup$
Yes, it's correct.
$endgroup$
– maridia
Dec 7 '18 at 4:35










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029458%2fsolution-verification-evaluate-lim-limits-n-to-infty-frac1-lambda-n2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029458%2fsolution-verification-evaluate-lim-limits-n-to-infty-frac1-lambda-n2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen