Evaluate the limit of the sequence: $lim_{n_toinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot...












2












$begingroup$


Evaluate the limit of the sequence:



$$lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}$$





My try:



Stolz-cesaro: The limit of the sequence is $frac{infty}{infty}$



$$lim_{ntoinfty}frac{a_n}{b_n}=lim_{ntoinfty}frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$



For our sequence:



$lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{n!}-sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})cdot(1+sqrt{n+1})-(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{(n-1)!}cdot(sqrt{n-1})}{left((1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})right)cdot(sqrt{n}+1)}$



Which got me nowhere.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Evaluate the limit of the sequence:



    $$lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}$$





    My try:



    Stolz-cesaro: The limit of the sequence is $frac{infty}{infty}$



    $$lim_{ntoinfty}frac{a_n}{b_n}=lim_{ntoinfty}frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$



    For our sequence:



    $lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{n!}-sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})cdot(1+sqrt{n+1})-(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{(n-1)!}cdot(sqrt{n-1})}{left((1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})right)cdot(sqrt{n}+1)}$



    Which got me nowhere.










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      1



      $begingroup$


      Evaluate the limit of the sequence:



      $$lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}$$





      My try:



      Stolz-cesaro: The limit of the sequence is $frac{infty}{infty}$



      $$lim_{ntoinfty}frac{a_n}{b_n}=lim_{ntoinfty}frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$



      For our sequence:



      $lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{n!}-sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})cdot(1+sqrt{n+1})-(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{(n-1)!}cdot(sqrt{n-1})}{left((1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})right)cdot(sqrt{n}+1)}$



      Which got me nowhere.










      share|cite|improve this question









      $endgroup$




      Evaluate the limit of the sequence:



      $$lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}$$





      My try:



      Stolz-cesaro: The limit of the sequence is $frac{infty}{infty}$



      $$lim_{ntoinfty}frac{a_n}{b_n}=lim_{ntoinfty}frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$



      For our sequence:



      $lim_{ntoinfty}frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{n!}-sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})cdot(1+sqrt{n+1})-(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})}=lim_{ntoinfty}frac{sqrt{(n-1)!}cdot(sqrt{n-1})}{left((1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})right)cdot(sqrt{n}+1)}$



      Which got me nowhere.







      calculus sequences-and-series limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 12 '18 at 10:33









      user605734 MBSuser605734 MBS

      3029




      3029






















          4 Answers
          4






          active

          oldest

          votes


















          4












          $begingroup$

          Consider:
          $$
          (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})
          $$



          Take the root from each pair of parentheses and multiply them, then:
          $$
          (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) > sqrt{n!} iff \
          iff frac{1}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} < frac{1}{sqrt{n!}}
          $$

          Going back to original we have that:
          $$
          frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{sqrt{(n-1)!}}{sqrt{n!}} = frac{1}{sqrt n}
          $$



          But the function is greater than $0$ and hence using squeeze theorem we conclude that:
          $$
          0 le lim_{ntoinfty}x_n le lim_{ntoinfty}frac{1}{sqrt n} = 0
          $$



          Hence the limit is $0$.






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            $(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) ge sqrt{1}cdotsqrt{2}cdots sqrt{n}= sqrt{n!}$, hence



            $0 le frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{1}{sqrt{n}}.$



            Can you proceed ?






            share|cite|improve this answer









            $endgroup$





















              3












              $begingroup$

              Note that
              $$
              frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac{1}{1+sqrt{n}}
              prod_{k=1}^{n-1}frac{sqrt{k}}{1+sqrt{k}}<frac{1}{1+sqrt{n}}to 0
              $$






              share|cite|improve this answer









              $endgroup$





















                3












                $begingroup$

                We have that



                $$frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac1{sqrt n}prod_{k=1}^nfrac{sqrt{k}}{1+sqrt{k}}le frac1{sqrt n}$$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  Elements on the denominator are multiplyting
                  $endgroup$
                  – user605734 MBS
                  Dec 12 '18 at 10:39










                • $begingroup$
                  Opssss....thanks!
                  $endgroup$
                  – gimusi
                  Dec 12 '18 at 10:40











                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036510%2fevaluate-the-limit-of-the-sequence-lim-n-to-infty-frac-sqrtn-11%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                4












                $begingroup$

                Consider:
                $$
                (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})
                $$



                Take the root from each pair of parentheses and multiply them, then:
                $$
                (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) > sqrt{n!} iff \
                iff frac{1}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} < frac{1}{sqrt{n!}}
                $$

                Going back to original we have that:
                $$
                frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{sqrt{(n-1)!}}{sqrt{n!}} = frac{1}{sqrt n}
                $$



                But the function is greater than $0$ and hence using squeeze theorem we conclude that:
                $$
                0 le lim_{ntoinfty}x_n le lim_{ntoinfty}frac{1}{sqrt n} = 0
                $$



                Hence the limit is $0$.






                share|cite|improve this answer









                $endgroup$


















                  4












                  $begingroup$

                  Consider:
                  $$
                  (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})
                  $$



                  Take the root from each pair of parentheses and multiply them, then:
                  $$
                  (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) > sqrt{n!} iff \
                  iff frac{1}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} < frac{1}{sqrt{n!}}
                  $$

                  Going back to original we have that:
                  $$
                  frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{sqrt{(n-1)!}}{sqrt{n!}} = frac{1}{sqrt n}
                  $$



                  But the function is greater than $0$ and hence using squeeze theorem we conclude that:
                  $$
                  0 le lim_{ntoinfty}x_n le lim_{ntoinfty}frac{1}{sqrt n} = 0
                  $$



                  Hence the limit is $0$.






                  share|cite|improve this answer









                  $endgroup$
















                    4












                    4








                    4





                    $begingroup$

                    Consider:
                    $$
                    (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})
                    $$



                    Take the root from each pair of parentheses and multiply them, then:
                    $$
                    (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) > sqrt{n!} iff \
                    iff frac{1}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} < frac{1}{sqrt{n!}}
                    $$

                    Going back to original we have that:
                    $$
                    frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{sqrt{(n-1)!}}{sqrt{n!}} = frac{1}{sqrt n}
                    $$



                    But the function is greater than $0$ and hence using squeeze theorem we conclude that:
                    $$
                    0 le lim_{ntoinfty}x_n le lim_{ntoinfty}frac{1}{sqrt n} = 0
                    $$



                    Hence the limit is $0$.






                    share|cite|improve this answer









                    $endgroup$



                    Consider:
                    $$
                    (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})
                    $$



                    Take the root from each pair of parentheses and multiply them, then:
                    $$
                    (1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) > sqrt{n!} iff \
                    iff frac{1}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} < frac{1}{sqrt{n!}}
                    $$

                    Going back to original we have that:
                    $$
                    frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{sqrt{(n-1)!}}{sqrt{n!}} = frac{1}{sqrt n}
                    $$



                    But the function is greater than $0$ and hence using squeeze theorem we conclude that:
                    $$
                    0 le lim_{ntoinfty}x_n le lim_{ntoinfty}frac{1}{sqrt n} = 0
                    $$



                    Hence the limit is $0$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 12 '18 at 10:52









                    romanroman

                    2,17321224




                    2,17321224























                        4












                        $begingroup$

                        $(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) ge sqrt{1}cdotsqrt{2}cdots sqrt{n}= sqrt{n!}$, hence



                        $0 le frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{1}{sqrt{n}}.$



                        Can you proceed ?






                        share|cite|improve this answer









                        $endgroup$


















                          4












                          $begingroup$

                          $(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) ge sqrt{1}cdotsqrt{2}cdots sqrt{n}= sqrt{n!}$, hence



                          $0 le frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{1}{sqrt{n}}.$



                          Can you proceed ?






                          share|cite|improve this answer









                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                            $(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) ge sqrt{1}cdotsqrt{2}cdots sqrt{n}= sqrt{n!}$, hence



                            $0 le frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{1}{sqrt{n}}.$



                            Can you proceed ?






                            share|cite|improve this answer









                            $endgroup$



                            $(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n}) ge sqrt{1}cdotsqrt{2}cdots sqrt{n}= sqrt{n!}$, hence



                            $0 le frac{sqrt{(n-1)!}}{(1+sqrt{1})cdot(1+sqrt{2})cdot (1+sqrt{3})cdots (1+sqrt{n})} le frac{1}{sqrt{n}}.$



                            Can you proceed ?







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Dec 12 '18 at 10:41









                            FredFred

                            45.7k1848




                            45.7k1848























                                3












                                $begingroup$

                                Note that
                                $$
                                frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac{1}{1+sqrt{n}}
                                prod_{k=1}^{n-1}frac{sqrt{k}}{1+sqrt{k}}<frac{1}{1+sqrt{n}}to 0
                                $$






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  Note that
                                  $$
                                  frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac{1}{1+sqrt{n}}
                                  prod_{k=1}^{n-1}frac{sqrt{k}}{1+sqrt{k}}<frac{1}{1+sqrt{n}}to 0
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    Note that
                                    $$
                                    frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac{1}{1+sqrt{n}}
                                    prod_{k=1}^{n-1}frac{sqrt{k}}{1+sqrt{k}}<frac{1}{1+sqrt{n}}to 0
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Note that
                                    $$
                                    frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac{1}{1+sqrt{n}}
                                    prod_{k=1}^{n-1}frac{sqrt{k}}{1+sqrt{k}}<frac{1}{1+sqrt{n}}to 0
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Dec 12 '18 at 10:38









                                    Yiorgos S. SmyrlisYiorgos S. Smyrlis

                                    63.3k1384163




                                    63.3k1384163























                                        3












                                        $begingroup$

                                        We have that



                                        $$frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac1{sqrt n}prod_{k=1}^nfrac{sqrt{k}}{1+sqrt{k}}le frac1{sqrt n}$$






                                        share|cite|improve this answer











                                        $endgroup$













                                        • $begingroup$
                                          Elements on the denominator are multiplyting
                                          $endgroup$
                                          – user605734 MBS
                                          Dec 12 '18 at 10:39










                                        • $begingroup$
                                          Opssss....thanks!
                                          $endgroup$
                                          – gimusi
                                          Dec 12 '18 at 10:40
















                                        3












                                        $begingroup$

                                        We have that



                                        $$frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac1{sqrt n}prod_{k=1}^nfrac{sqrt{k}}{1+sqrt{k}}le frac1{sqrt n}$$






                                        share|cite|improve this answer











                                        $endgroup$













                                        • $begingroup$
                                          Elements on the denominator are multiplyting
                                          $endgroup$
                                          – user605734 MBS
                                          Dec 12 '18 at 10:39










                                        • $begingroup$
                                          Opssss....thanks!
                                          $endgroup$
                                          – gimusi
                                          Dec 12 '18 at 10:40














                                        3












                                        3








                                        3





                                        $begingroup$

                                        We have that



                                        $$frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac1{sqrt n}prod_{k=1}^nfrac{sqrt{k}}{1+sqrt{k}}le frac1{sqrt n}$$






                                        share|cite|improve this answer











                                        $endgroup$



                                        We have that



                                        $$frac{sqrt{(n-1)!}}{prod_{k=1}^nbig(1+sqrt{k}big)}=frac1{sqrt n}prod_{k=1}^nfrac{sqrt{k}}{1+sqrt{k}}le frac1{sqrt n}$$







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Dec 12 '18 at 10:45

























                                        answered Dec 12 '18 at 10:38









                                        gimusigimusi

                                        92.8k84494




                                        92.8k84494












                                        • $begingroup$
                                          Elements on the denominator are multiplyting
                                          $endgroup$
                                          – user605734 MBS
                                          Dec 12 '18 at 10:39










                                        • $begingroup$
                                          Opssss....thanks!
                                          $endgroup$
                                          – gimusi
                                          Dec 12 '18 at 10:40


















                                        • $begingroup$
                                          Elements on the denominator are multiplyting
                                          $endgroup$
                                          – user605734 MBS
                                          Dec 12 '18 at 10:39










                                        • $begingroup$
                                          Opssss....thanks!
                                          $endgroup$
                                          – gimusi
                                          Dec 12 '18 at 10:40
















                                        $begingroup$
                                        Elements on the denominator are multiplyting
                                        $endgroup$
                                        – user605734 MBS
                                        Dec 12 '18 at 10:39




                                        $begingroup$
                                        Elements on the denominator are multiplyting
                                        $endgroup$
                                        – user605734 MBS
                                        Dec 12 '18 at 10:39












                                        $begingroup$
                                        Opssss....thanks!
                                        $endgroup$
                                        – gimusi
                                        Dec 12 '18 at 10:40




                                        $begingroup$
                                        Opssss....thanks!
                                        $endgroup$
                                        – gimusi
                                        Dec 12 '18 at 10:40


















                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036510%2fevaluate-the-limit-of-the-sequence-lim-n-to-infty-frac-sqrtn-11%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Wiesbaden

                                        Marschland

                                        Dieringhausen