How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?
$begingroup$
How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?
Could anyone tell me please?
calculus integration
$endgroup$
add a comment |
$begingroup$
How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?
Could anyone tell me please?
calculus integration
$endgroup$
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
1
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04
add a comment |
$begingroup$
How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?
Could anyone tell me please?
calculus integration
$endgroup$
How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?
Could anyone tell me please?
calculus integration
calculus integration
edited Dec 12 '18 at 10:01
Arthur
114k7115197
114k7115197
asked Dec 12 '18 at 9:57
hopefullyhopefully
250114
250114
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
1
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04
add a comment |
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
1
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
1
1
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}
and your conditions are $A+B=1$, $A-B = 0$.
$endgroup$
add a comment |
$begingroup$
Not what you're asking, but here's a different method
$$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$
Let $u = x-frac{1}{x}$, then the integral becomes
$$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036484%2fhow-can-i-evaluate-int-frac-x2-1x4-x2-1-dx-by-partial-fraction-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}
and your conditions are $A+B=1$, $A-B = 0$.
$endgroup$
add a comment |
$begingroup$
Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}
and your conditions are $A+B=1$, $A-B = 0$.
$endgroup$
add a comment |
$begingroup$
Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}
and your conditions are $A+B=1$, $A-B = 0$.
$endgroup$
Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}
and your conditions are $A+B=1$, $A-B = 0$.
answered Dec 12 '18 at 10:04
GibbsGibbs
5,0873827
5,0873827
add a comment |
add a comment |
$begingroup$
Not what you're asking, but here's a different method
$$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$
Let $u = x-frac{1}{x}$, then the integral becomes
$$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$
$endgroup$
add a comment |
$begingroup$
Not what you're asking, but here's a different method
$$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$
Let $u = x-frac{1}{x}$, then the integral becomes
$$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$
$endgroup$
add a comment |
$begingroup$
Not what you're asking, but here's a different method
$$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$
Let $u = x-frac{1}{x}$, then the integral becomes
$$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$
$endgroup$
Not what you're asking, but here's a different method
$$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$
Let $u = x-frac{1}{x}$, then the integral becomes
$$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$
answered Dec 12 '18 at 10:54
DylanDylan
12.8k31026
12.8k31026
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036484%2fhow-can-i-evaluate-int-frac-x2-1x4-x2-1-dx-by-partial-fraction-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03
1
$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04