How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?












0












$begingroup$


How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?



Could anyone tell me please?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What do you know about partial fraction decomposition?
    $endgroup$
    – Arthur
    Dec 12 '18 at 10:03






  • 1




    $begingroup$
    Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:04
















0












$begingroup$


How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?



Could anyone tell me please?










share|cite|improve this question











$endgroup$












  • $begingroup$
    What do you know about partial fraction decomposition?
    $endgroup$
    – Arthur
    Dec 12 '18 at 10:03






  • 1




    $begingroup$
    Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:04














0












0








0





$begingroup$


How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?



Could anyone tell me please?










share|cite|improve this question











$endgroup$




How can I evaluate $int frac {x^2 + 1}{x^4 + x^2 +1} dx$ by partial fraction method?



Could anyone tell me please?







calculus integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 10:01









Arthur

114k7115197




114k7115197










asked Dec 12 '18 at 9:57









hopefullyhopefully

250114




250114












  • $begingroup$
    What do you know about partial fraction decomposition?
    $endgroup$
    – Arthur
    Dec 12 '18 at 10:03






  • 1




    $begingroup$
    Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:04


















  • $begingroup$
    What do you know about partial fraction decomposition?
    $endgroup$
    – Arthur
    Dec 12 '18 at 10:03






  • 1




    $begingroup$
    Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:04
















$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03




$begingroup$
What do you know about partial fraction decomposition?
$endgroup$
– Arthur
Dec 12 '18 at 10:03




1




1




$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04




$begingroup$
Partial fraction decomposition provides an algorithm to rewrite your integrand. Have you tried to apply it?
$endgroup$
– Christoph
Dec 12 '18 at 10:04










2 Answers
2






active

oldest

votes


















3












$begingroup$

Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
& = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
end{align}

and your conditions are $A+B=1$, $A-B = 0$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Not what you're asking, but here's a different method



    $$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$



    Let $u = x-frac{1}{x}$, then the integral becomes



    $$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036484%2fhow-can-i-evaluate-int-frac-x2-1x4-x2-1-dx-by-partial-fraction-m%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
      begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
      & = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
      end{align}

      and your conditions are $A+B=1$, $A-B = 0$.






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
        begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
        & = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
        end{align}

        and your conditions are $A+B=1$, $A-B = 0$.






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
          begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
          & = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
          end{align}

          and your conditions are $A+B=1$, $A-B = 0$.






          share|cite|improve this answer









          $endgroup$



          Hint: Notice that $1+x^2+x^4 = (1+x^2)^2-x^2=(1+x^2+x)(1+x^2-x)$, so your function can be rewritten as
          begin{align}frac{A}{1+x+x^2}+frac{B}{1-x+x^2} & = frac{A-Ax+Ax^2+B+Bx+Bx^2}{1+x^2+x^4} \
          & = frac{(A+B)+(B-A)x+(A+B)x^2}{1+x^2+x^4}
          end{align}

          and your conditions are $A+B=1$, $A-B = 0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 10:04









          GibbsGibbs

          5,0873827




          5,0873827























              1












              $begingroup$

              Not what you're asking, but here's a different method



              $$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$



              Let $u = x-frac{1}{x}$, then the integral becomes



              $$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Not what you're asking, but here's a different method



                $$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$



                Let $u = x-frac{1}{x}$, then the integral becomes



                $$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Not what you're asking, but here's a different method



                  $$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$



                  Let $u = x-frac{1}{x}$, then the integral becomes



                  $$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$






                  share|cite|improve this answer









                  $endgroup$



                  Not what you're asking, but here's a different method



                  $$ int frac{x^2+1}{x^4+x^2+1}dx = int frac{1 + frac{1}{x^2}}{x^2 + frac{1}{x^2} + 1}dx = int frac{1 + frac{1}{x^2}}{left(x - frac{1}{x}right)^2 + 3}dx $$



                  Let $u = x-frac{1}{x}$, then the integral becomes



                  $$ int frac{1}{u^2+3}du = frac{1}{sqrt{3}}arctanfrac{u}{sqrt{3}} + C $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 12 '18 at 10:54









                  DylanDylan

                  12.8k31026




                  12.8k31026






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036484%2fhow-can-i-evaluate-int-frac-x2-1x4-x2-1-dx-by-partial-fraction-m%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen