Prove $sin^{-1}(1)geq int_0^b1/sqrt{1-x^2}dx +(1-b)pi/2$ for $b in [0,1)$












3












$begingroup$


I'm trying to prove the following inequality:



$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$



for every $b in [0,1)$.



I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).



My Attempt



I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.



This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.



I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Small thing: it should be $le$ not $<$ because of $b=0$.
    $endgroup$
    – Zachary Selk
    Dec 11 '18 at 17:51










  • $begingroup$
    It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
    $endgroup$
    – Sameer Baheti
    Dec 11 '18 at 18:07


















3












$begingroup$


I'm trying to prove the following inequality:



$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$



for every $b in [0,1)$.



I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).



My Attempt



I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.



This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.



I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Small thing: it should be $le$ not $<$ because of $b=0$.
    $endgroup$
    – Zachary Selk
    Dec 11 '18 at 17:51










  • $begingroup$
    It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
    $endgroup$
    – Sameer Baheti
    Dec 11 '18 at 18:07
















3












3








3





$begingroup$


I'm trying to prove the following inequality:



$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$



for every $b in [0,1)$.



I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).



My Attempt



I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.



This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.



I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.










share|cite|improve this question











$endgroup$




I'm trying to prove the following inequality:



$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$



for every $b in [0,1)$.



I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).



My Attempt



I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.



This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.



I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.







real-analysis integration trigonometry inequality proof-writing






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 7:44









Sameer Baheti

5168




5168










asked Dec 11 '18 at 17:39







user624612















  • 3




    $begingroup$
    Small thing: it should be $le$ not $<$ because of $b=0$.
    $endgroup$
    – Zachary Selk
    Dec 11 '18 at 17:51










  • $begingroup$
    It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
    $endgroup$
    – Sameer Baheti
    Dec 11 '18 at 18:07
















  • 3




    $begingroup$
    Small thing: it should be $le$ not $<$ because of $b=0$.
    $endgroup$
    – Zachary Selk
    Dec 11 '18 at 17:51










  • $begingroup$
    It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
    $endgroup$
    – Sameer Baheti
    Dec 11 '18 at 18:07










3




3




$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51




$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51












$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07






$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07












5 Answers
5






active

oldest

votes


















1












$begingroup$

The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$

This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$

If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$

then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.






    share|cite|improve this answer











    $endgroup$





















      0












      $begingroup$

      The inequality you seek to prove is not true. Put $b=1/4$.



      However, $sin^{-1}ble bpi/2, forall bin[0,1)$



      Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$



      $f'(x)=pi/2-frac1{sqrt{1-x^2}}$



      $f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$



      This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
      This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$






      share|cite|improve this answer











      $endgroup$





















        0












        $begingroup$

        If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$  This implies



        $$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$



        for $bin (0,1).$ Apply this with $f(b)=arcsin b.$






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          Your inequality is reversed. The correct inequality is
          $$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
          for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.



          As you did, we can show that the inequality above is equivalent to
          $$arcsin(b)leq frac{pi}{2},b$$
          for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
          $$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
          by Jensen's Inequality. This shows that
          $$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
          Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035549%2fprove-sin-11-geq-int-0b1-sqrt1-x2dx-1-b-pi-2-for-b-in-0-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown
























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The inequality you want to prove is
            $$
            arcsin1-arcsin b<frac{pi}{2}(1-b).
            $$

            This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
            $$
            arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
            $$

            If
            $$
            frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
            $$

            then
            $$
            b<xi<sqrt{1-frac{4}{pi^2}}.
            $$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              The inequality you want to prove is
              $$
              arcsin1-arcsin b<frac{pi}{2}(1-b).
              $$

              This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
              $$
              arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
              $$

              If
              $$
              frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
              $$

              then
              $$
              b<xi<sqrt{1-frac{4}{pi^2}}.
              $$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                The inequality you want to prove is
                $$
                arcsin1-arcsin b<frac{pi}{2}(1-b).
                $$

                This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
                $$
                arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
                $$

                If
                $$
                frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
                $$

                then
                $$
                b<xi<sqrt{1-frac{4}{pi^2}}.
                $$






                share|cite|improve this answer









                $endgroup$



                The inequality you want to prove is
                $$
                arcsin1-arcsin b<frac{pi}{2}(1-b).
                $$

                This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
                $$
                arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
                $$

                If
                $$
                frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
                $$

                then
                $$
                b<xi<sqrt{1-frac{4}{pi^2}}.
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 11 '18 at 18:21









                Julián AguirreJulián Aguirre

                68.6k24094




                68.6k24094























                    0












                    $begingroup$

                    I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.






                    share|cite|improve this answer











                    $endgroup$


















                      0












                      $begingroup$

                      I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.






                      share|cite|improve this answer











                      $endgroup$
















                        0












                        0








                        0





                        $begingroup$

                        I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.






                        share|cite|improve this answer











                        $endgroup$



                        I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Dec 11 '18 at 18:12

























                        answered Dec 11 '18 at 18:03









                        Sameer BahetiSameer Baheti

                        5168




                        5168























                            0












                            $begingroup$

                            The inequality you seek to prove is not true. Put $b=1/4$.



                            However, $sin^{-1}ble bpi/2, forall bin[0,1)$



                            Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$



                            $f'(x)=pi/2-frac1{sqrt{1-x^2}}$



                            $f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$



                            This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
                            This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$






                            share|cite|improve this answer











                            $endgroup$


















                              0












                              $begingroup$

                              The inequality you seek to prove is not true. Put $b=1/4$.



                              However, $sin^{-1}ble bpi/2, forall bin[0,1)$



                              Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$



                              $f'(x)=pi/2-frac1{sqrt{1-x^2}}$



                              $f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$



                              This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
                              This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$






                              share|cite|improve this answer











                              $endgroup$
















                                0












                                0








                                0





                                $begingroup$

                                The inequality you seek to prove is not true. Put $b=1/4$.



                                However, $sin^{-1}ble bpi/2, forall bin[0,1)$



                                Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$



                                $f'(x)=pi/2-frac1{sqrt{1-x^2}}$



                                $f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$



                                This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
                                This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$






                                share|cite|improve this answer











                                $endgroup$



                                The inequality you seek to prove is not true. Put $b=1/4$.



                                However, $sin^{-1}ble bpi/2, forall bin[0,1)$



                                Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$



                                $f'(x)=pi/2-frac1{sqrt{1-x^2}}$



                                $f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$



                                This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
                                This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Dec 11 '18 at 18:29

























                                answered Dec 11 '18 at 17:57









                                Shubham JohriShubham Johri

                                5,092717




                                5,092717























                                    0












                                    $begingroup$

                                    If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$  This implies



                                    $$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$



                                    for $bin (0,1).$ Apply this with $f(b)=arcsin b.$






                                    share|cite|improve this answer









                                    $endgroup$


















                                      0












                                      $begingroup$

                                      If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$  This implies



                                      $$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$



                                      for $bin (0,1).$ Apply this with $f(b)=arcsin b.$






                                      share|cite|improve this answer









                                      $endgroup$
















                                        0












                                        0








                                        0





                                        $begingroup$

                                        If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$  This implies



                                        $$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$



                                        for $bin (0,1).$ Apply this with $f(b)=arcsin b.$






                                        share|cite|improve this answer









                                        $endgroup$



                                        If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$  This implies



                                        $$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$



                                        for $bin (0,1).$ Apply this with $f(b)=arcsin b.$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Dec 11 '18 at 19:29









                                        zhw.zhw.

                                        72.6k43175




                                        72.6k43175























                                            0












                                            $begingroup$

                                            Your inequality is reversed. The correct inequality is
                                            $$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
                                            for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.



                                            As you did, we can show that the inequality above is equivalent to
                                            $$arcsin(b)leq frac{pi}{2},b$$
                                            for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
                                            $$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
                                            by Jensen's Inequality. This shows that
                                            $$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
                                            Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.






                                            share|cite|improve this answer









                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Your inequality is reversed. The correct inequality is
                                              $$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
                                              for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.



                                              As you did, we can show that the inequality above is equivalent to
                                              $$arcsin(b)leq frac{pi}{2},b$$
                                              for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
                                              $$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
                                              by Jensen's Inequality. This shows that
                                              $$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
                                              Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.






                                              share|cite|improve this answer









                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Your inequality is reversed. The correct inequality is
                                                $$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
                                                for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.



                                                As you did, we can show that the inequality above is equivalent to
                                                $$arcsin(b)leq frac{pi}{2},b$$
                                                for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
                                                $$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
                                                by Jensen's Inequality. This shows that
                                                $$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
                                                Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.






                                                share|cite|improve this answer









                                                $endgroup$



                                                Your inequality is reversed. The correct inequality is
                                                $$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
                                                for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.



                                                As you did, we can show that the inequality above is equivalent to
                                                $$arcsin(b)leq frac{pi}{2},b$$
                                                for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
                                                $$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
                                                by Jensen's Inequality. This shows that
                                                $$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
                                                Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 11 '18 at 23:26









                                                BatominovskiBatominovski

                                                1




                                                1






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035549%2fprove-sin-11-geq-int-0b1-sqrt1-x2dx-1-b-pi-2-for-b-in-0-1%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Wiesbaden

                                                    Marschland

                                                    Dieringhausen