Prove $sin^{-1}(1)geq int_0^b1/sqrt{1-x^2}dx +(1-b)pi/2$ for $b in [0,1)$
$begingroup$
I'm trying to prove the following inequality:
$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$
for every $b in [0,1)$.
I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).
My Attempt
I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.
This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.
I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.
real-analysis integration trigonometry inequality proof-writing
$endgroup$
add a comment |
$begingroup$
I'm trying to prove the following inequality:
$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$
for every $b in [0,1)$.
I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).
My Attempt
I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.
This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.
I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.
real-analysis integration trigonometry inequality proof-writing
$endgroup$
3
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07
add a comment |
$begingroup$
I'm trying to prove the following inequality:
$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$
for every $b in [0,1)$.
I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).
My Attempt
I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.
This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.
I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.
real-analysis integration trigonometry inequality proof-writing
$endgroup$
I'm trying to prove the following inequality:
$$sin^{-1}(1)geqint_0^b1/sqrt{1-x^2},dx +(1-b)pi/2$$
for every $b in [0,1)$.
I'm given $sin^{-1}(1) = pi/2$ and $sin^{-1}(x)$ is strictly increasing. We also know $sin^{-1}(x)$ is the inverse of the strictly increasing function $sin(x)$ (when $xin [-pi/2, pi/2] $).
My Attempt
I can prove using integration and the FTC that
$int_0^b1/sqrt{1-x^2},dx = sin^{-1}(b)$.
This information simplifies the inequality to $0 geq sin^{-1}(b) - btimes pi/2$.
I'm having trouble showing that $ sin^{-1}(b) leq btimes pi/2$ given that everything above is true.
real-analysis integration trigonometry inequality proof-writing
real-analysis integration trigonometry inequality proof-writing
edited Dec 12 '18 at 7:44
Sameer Baheti
5168
5168
asked Dec 11 '18 at 17:39
user624612
3
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07
add a comment |
3
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07
3
3
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$
This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$
If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$
then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$
$endgroup$
add a comment |
$begingroup$
I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.
$endgroup$
add a comment |
$begingroup$
The inequality you seek to prove is not true. Put $b=1/4$.
However, $sin^{-1}ble bpi/2, forall bin[0,1)$
Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$
$f'(x)=pi/2-frac1{sqrt{1-x^2}}$
$f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$
This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$
$endgroup$
add a comment |
$begingroup$
If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$ This implies
$$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$
for $bin (0,1).$ Apply this with $f(b)=arcsin b.$
$endgroup$
add a comment |
$begingroup$
Your inequality is reversed. The correct inequality is
$$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.
As you did, we can show that the inequality above is equivalent to
$$arcsin(b)leq frac{pi}{2},b$$
for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
$$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
by Jensen's Inequality. This shows that
$$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035549%2fprove-sin-11-geq-int-0b1-sqrt1-x2dx-1-b-pi-2-for-b-in-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$
This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$
If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$
then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$
$endgroup$
add a comment |
$begingroup$
The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$
This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$
If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$
then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$
$endgroup$
add a comment |
$begingroup$
The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$
This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$
If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$
then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$
$endgroup$
The inequality you want to prove is
$$
arcsin1-arcsin b<frac{pi}{2}(1-b).
$$
This inequality is false for $b$ close to $1$. Indeed, by the Mean Value Theorem
$$
arcsin1-arcsin b=frac{1-b}{sqrt{1-xi^2}},quad b<xi<1.
$$
If
$$
frac{1-b}{sqrt{1-xi^2}}<frac{pi}{2}(1-b),
$$
then
$$
b<xi<sqrt{1-frac{4}{pi^2}}.
$$
answered Dec 11 '18 at 18:21
Julián AguirreJulián Aguirre
68.6k24094
68.6k24094
add a comment |
add a comment |
$begingroup$
I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.
$endgroup$
add a comment |
$begingroup$
I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.
$endgroup$
add a comment |
$begingroup$
I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.
$endgroup$
I think $$sin^{-1}(b) leq bfrac{pi}2$$ for every $b in big[0,1)$ since the graph of $y=b$ when scaled upto $y=frac{pi}2b $ will get above that of $sin^{-1}(b)$ for $binbig(0,1)$ and equal for $b=0$.
edited Dec 11 '18 at 18:12
answered Dec 11 '18 at 18:03
Sameer BahetiSameer Baheti
5168
5168
add a comment |
add a comment |
$begingroup$
The inequality you seek to prove is not true. Put $b=1/4$.
However, $sin^{-1}ble bpi/2, forall bin[0,1)$
Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$
$f'(x)=pi/2-frac1{sqrt{1-x^2}}$
$f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$
This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$
$endgroup$
add a comment |
$begingroup$
The inequality you seek to prove is not true. Put $b=1/4$.
However, $sin^{-1}ble bpi/2, forall bin[0,1)$
Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$
$f'(x)=pi/2-frac1{sqrt{1-x^2}}$
$f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$
This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$
$endgroup$
add a comment |
$begingroup$
The inequality you seek to prove is not true. Put $b=1/4$.
However, $sin^{-1}ble bpi/2, forall bin[0,1)$
Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$
$f'(x)=pi/2-frac1{sqrt{1-x^2}}$
$f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$
This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$
$endgroup$
The inequality you seek to prove is not true. Put $b=1/4$.
However, $sin^{-1}ble bpi/2, forall bin[0,1)$
Let $f(x)=xpi/2-sin^{-1}x, f(0)=f(1)=0$
$f'(x)=pi/2-frac1{sqrt{1-x^2}}$
$f'(x)>0, forall xinBig[0,sqrt{1-frac4{pi^2}}Big)$ and $f'(x)<0, forall xinBig(sqrt{1-frac4{pi^2}},1Big)$
This means that $f(x)$ initally increases from $f(0)$ to a maxima and then decreases to $f(1)$ in $[0,1]$. So $f(x)$ stays above $min{f(0),f(1)}=0$.
This means $f(x)ge0 forall xin[0,1)implies f(b)ge0$
edited Dec 11 '18 at 18:29
answered Dec 11 '18 at 17:57
Shubham JohriShubham Johri
5,092717
5,092717
add a comment |
add a comment |
$begingroup$
If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$ This implies
$$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$
for $bin (0,1).$ Apply this with $f(b)=arcsin b.$
$endgroup$
add a comment |
$begingroup$
If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$ This implies
$$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$
for $bin (0,1).$ Apply this with $f(b)=arcsin b.$
$endgroup$
add a comment |
$begingroup$
If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$ This implies
$$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$
for $bin (0,1).$ Apply this with $f(b)=arcsin b.$
$endgroup$
If $f$ is strictly convex on $[0,1],$ then $(b,f(b))$ lies below the line through $(0,f(0))$ and $(1,f(1))$ for $bin (0,1).$ This implies
$$frac{f(1)-f(b)}{1-b} > frac{f(1)-f(0)}{1}$$
for $bin (0,1).$ Apply this with $f(b)=arcsin b.$
answered Dec 11 '18 at 19:29
zhw.zhw.
72.6k43175
72.6k43175
add a comment |
add a comment |
$begingroup$
Your inequality is reversed. The correct inequality is
$$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.
As you did, we can show that the inequality above is equivalent to
$$arcsin(b)leq frac{pi}{2},b$$
for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
$$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
by Jensen's Inequality. This shows that
$$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.
$endgroup$
add a comment |
$begingroup$
Your inequality is reversed. The correct inequality is
$$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.
As you did, we can show that the inequality above is equivalent to
$$arcsin(b)leq frac{pi}{2},b$$
for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
$$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
by Jensen's Inequality. This shows that
$$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.
$endgroup$
add a comment |
$begingroup$
Your inequality is reversed. The correct inequality is
$$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.
As you did, we can show that the inequality above is equivalent to
$$arcsin(b)leq frac{pi}{2},b$$
for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
$$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
by Jensen's Inequality. This shows that
$$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.
$endgroup$
Your inequality is reversed. The correct inequality is
$$arcsin(1)geq int_0^b,frac{1}{sqrt{1-x^2}},text{d}x+frac{pi}{2},(1-b)$$
for all $bin[0,1]$. The equality holds if and only if $b=0$ or $b=1$.
As you did, we can show that the inequality above is equivalent to
$$arcsin(b)leq frac{pi}{2},b$$
for all $bin[0,1]$. Now, the function $f:=arcsin$ is convex on $[0,1]$. Therefore, for each $bin [0,1]$,
$$f(b)=fbig((1-b)cdot 0+bcdot 1big)leq (1-b)cdot f(0)+bcdot f(1)$$
by Jensen's Inequality. This shows that
$$arcsin(b)leq (1-b)cdot 0+bcdotfrac{pi}{2}=frac{pi}{2},btext{ for all }bin[0,1],.$$
Since $arcsin$ is strictly convex, the only equality cases are $b=0$ and $b=1$.
answered Dec 11 '18 at 23:26
BatominovskiBatominovski
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035549%2fprove-sin-11-geq-int-0b1-sqrt1-x2dx-1-b-pi-2-for-b-in-0-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Small thing: it should be $le$ not $<$ because of $b=0$.
$endgroup$
– Zachary Selk
Dec 11 '18 at 17:51
$begingroup$
It should be $geq$ in the title and $arcsin(b) leq btimes pi/2$ in the body if $b in [0,frac{pi}2)$
$endgroup$
– Sameer Baheti
Dec 11 '18 at 18:07