Find $p>1$ that ${intlimits^p_1}frac{1}{x},mathrm{d}x={intlimits^p_1}lnleft(xright),mathrm{d}x$
$begingroup$
Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}
It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.
calculus analysis definite-integrals
$endgroup$
add a comment |
$begingroup$
Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}
It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.
calculus analysis definite-integrals
$endgroup$
2
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41
add a comment |
$begingroup$
Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}
It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.
calculus analysis definite-integrals
$endgroup$
Find $p>1$ that $${displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integral}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 1 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
&left[xlnleft(x right)-x+Cright]^p_1=left[plnleft(p right)-p+Cright]-left[1lnleft(1right)-1+Cright]
end{align*}
It was already mentioned, that I had a typo. I corrected everything and contributed my own solution.
calculus analysis definite-integrals
calculus analysis definite-integrals
edited Dec 20 '18 at 12:08
Eff
11.6k21638
11.6k21638
asked Dec 20 '18 at 10:39
DoesbaddelDoesbaddel
34011
34011
2
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41
add a comment |
2
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41
2
2
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$
$endgroup$
add a comment |
$begingroup$
Find $p>1$ that
$$
{displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
&=left[plnleft(p right)-p+Cright]-[-1+C]\
&=plnleft(p right)-p+1
end{align*}
Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
begin{align*}
&lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
&iff-1+p+ln(p)-pln(p)=0\
&iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
&iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
&iff (ln(p)-1)=0\
&iff (ln(p))=1&& vert exp{()}\
&iff underline{underline{p=e}}
end{align*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047396%2ffind-p1-that-int-limitsp-1-frac1x-mathrmdx-int-limitsp-1-ln%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$
$endgroup$
add a comment |
$begingroup$
$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$
$endgroup$
add a comment |
$begingroup$
$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$
$endgroup$
$ int_1^p frac{1}{x} dx=int_1^p ln x dx iff ln p = p ln p-p+1 iff (1-p) ln p=1-p iff ln p=1 iff p=e.$
answered Dec 20 '18 at 11:05
FredFred
46.9k1848
46.9k1848
add a comment |
add a comment |
$begingroup$
Find $p>1$ that
$$
{displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
&=left[plnleft(p right)-p+Cright]-[-1+C]\
&=plnleft(p right)-p+1
end{align*}
Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
begin{align*}
&lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
&iff-1+p+ln(p)-pln(p)=0\
&iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
&iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
&iff (ln(p)-1)=0\
&iff (ln(p))=1&& vert exp{()}\
&iff underline{underline{p=e}}
end{align*}
$endgroup$
add a comment |
$begingroup$
Find $p>1$ that
$$
{displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
&=left[plnleft(p right)-p+Cright]-[-1+C]\
&=plnleft(p right)-p+1
end{align*}
Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
begin{align*}
&lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
&iff-1+p+ln(p)-pln(p)=0\
&iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
&iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
&iff (ln(p)-1)=0\
&iff (ln(p))=1&& vert exp{()}\
&iff underline{underline{p=e}}
end{align*}
$endgroup$
add a comment |
$begingroup$
Find $p>1$ that
$$
{displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
&=left[plnleft(p right)-p+Cright]-[-1+C]\
&=plnleft(p right)-p+1
end{align*}
Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
begin{align*}
&lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
&iff-1+p+ln(p)-pln(p)=0\
&iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
&iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
&iff (ln(p)-1)=0\
&iff (ln(p))=1&& vert exp{()}\
&iff underline{underline{p=e}}
end{align*}
$endgroup$
Find $p>1$ that
$$
{displaystyleintlimits^p_1}dfrac{1}{x},mathrm{d}x={displaystyleintlimits^p_1}lnleft(xright),mathrm{d}x
$$
begin{align*}
&{displaystyleint}dfrac{1}{x},mathrm{d}x=lnleft(mid x mid right) && vert text{general integr}
end{align*}
$F_1(x)=lnleft({mid x mid} right)+C$
begin{align*}
&{displaystyleint}1cdotlnleft(xright ),mathrm{d}x && vert 2. text{ with } f'=1, g=ln(x)\
&=xlnleft(xright)-{displaystyleint}1,mathrm{d}x\
&=xlnleft(xright)-x
end{align*}
$F_2(x)=xlnleft(xright)-x+C$
begin{align*}
left[lnleft(mid{x}midright)+Cright]^p_1&=left[ln({mid p mid})+Cright]-left[ln({mid 0 mid})+Cright]\
&=lnleft(pright)
end{align*}
begin{align*}
left[xlnleft(x right)-x+Cright]^p_1&=left[plnleft(p right)-p+Cright]-left[1lnleft(1 right)-1+Cright]\
&=left[plnleft(p right)-p+Cright]-[-1+C]\
&=plnleft(p right)-p+1
end{align*}
Solve $lnleft(pright)=plnleft(p right)-p+1$ for $p$:
begin{align*}
&lnleft(pright)=plnleft(p right)-p+1&&vert -(1-p+pln(p)\
&iff-1+p+ln(p)-pln(p)=0\
&iff-(p-1)cdot (ln(p)-1)=0&& vert cdot (-1)\
&iff (p-1)cdot (ln(p)-1)=0 && vert p>1\
&iff (ln(p)-1)=0\
&iff (ln(p))=1&& vert exp{()}\
&iff underline{underline{p=e}}
end{align*}
edited Dec 21 '18 at 9:41
answered Dec 20 '18 at 11:05
DoesbaddelDoesbaddel
34011
34011
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047396%2ffind-p1-that-int-limitsp-1-frac1x-mathrmdx-int-limitsp-1-ln%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Why did you put $0$ instead of $1$?
$endgroup$
– metamorphy
Dec 20 '18 at 10:41
$begingroup$
Oh, I'm so dumb. Thanks, that was my mistake, it's 1 not 0.
$endgroup$
– Doesbaddel
Dec 20 '18 at 10:41