Finding $F$ from a Lebesgue-Stieltjes Measure
$begingroup$
Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$
$mu_F({1})=F(1)=frac{1}{4}$
$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $
However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.
Question:
Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?
Thanks in advance!
measure-theory lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$
$mu_F({1})=F(1)=frac{1}{4}$
$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $
However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.
Question:
Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?
Thanks in advance!
measure-theory lebesgue-measure
$endgroup$
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46
add a comment |
$begingroup$
Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$
$mu_F({1})=F(1)=frac{1}{4}$
$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $
However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.
Question:
Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?
Thanks in advance!
measure-theory lebesgue-measure
$endgroup$
Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$
$mu_F({1})=F(1)=frac{1}{4}$
$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $
However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.
Question:
Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?
Thanks in advance!
measure-theory lebesgue-measure
measure-theory lebesgue-measure
edited Dec 21 '18 at 19:49
Pedro Gomes
asked Dec 21 '18 at 15:20
Pedro GomesPedro Gomes
1,8892721
1,8892721
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46
add a comment |
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$ Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$ Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$
To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$where $0leqdelta<infty.$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048600%2ffinding-f-from-a-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$ Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$ Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$
To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$where $0leqdelta<infty.$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
add a comment |
$begingroup$
Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$ Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$ Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$
To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$where $0leqdelta<infty.$
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
add a comment |
$begingroup$
Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$ Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$ Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$
To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$where $0leqdelta<infty.$
$endgroup$
Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$ Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$ Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$
To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$where $0leqdelta<infty.$
answered Dec 21 '18 at 20:43
SongSong
16.2k1739
16.2k1739
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
add a comment |
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Dec 22 '18 at 22:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048600%2ffinding-f-from-a-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03
$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46