Finding $F$ from a Lebesgue-Stieltjes Measure












1












$begingroup$



Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$




$mu_F({1})=F(1)=frac{1}{4}$



$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $



However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.



Question:



Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?



Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
    $endgroup$
    – Math1000
    Dec 21 '18 at 18:03










  • $begingroup$
    @Math1000 Thanks you are right!
    $endgroup$
    – Pedro Gomes
    Dec 21 '18 at 19:46


















1












$begingroup$



Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$




$mu_F({1})=F(1)=frac{1}{4}$



$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $



However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.



Question:



Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?



Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
    $endgroup$
    – Math1000
    Dec 21 '18 at 18:03










  • $begingroup$
    @Math1000 Thanks you are right!
    $endgroup$
    – Pedro Gomes
    Dec 21 '18 at 19:46
















1












1








1





$begingroup$



Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$




$mu_F({1})=F(1)=frac{1}{4}$



$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $



However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.



Question:



Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?



Thanks in advance!










share|cite|improve this question











$endgroup$





Exercise: Define a function $F:mathbb{R}tomathbb{R}$ such that the associated Lebesgue-Stieltjes measure verifies conditions: $mu_F({1})=frac{1}{4}$,$mu_F((-infty,1))=0$,$mu_F((1,frac{3}{2}))=1$ and $mu_F([2,x))=frac{x}{2}$,$forall x>2$




$mu_F({1})=F(1)=frac{1}{4}$



$mu_F((1,frac{3}{2}))=F(frac{3}{2})-F(1)=1implies F(frac{3}{2})-frac{1}{4}=1implies F(frac{3}{2})=frac{5}{4} $



However I have no idea on how to deal with $mu_F([2,x))=frac{x}{2}$,$forall x>2$
. I am not understanding the aim of the exercise I tried to draw the function and I can see a straight line from minus infinity to one at the height of $frac{1}{4}$ and then a point at $1.5$ below the $X$ axis $frac{3}{4}$.



Question:



Since the function is not assumed to be either continuous or trivial how should I find the aforementioned function $F$?



Thanks in advance!







measure-theory lebesgue-measure






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 19:49







Pedro Gomes

















asked Dec 21 '18 at 15:20









Pedro GomesPedro Gomes

1,8892721




1,8892721












  • $begingroup$
    I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
    $endgroup$
    – Math1000
    Dec 21 '18 at 18:03










  • $begingroup$
    @Math1000 Thanks you are right!
    $endgroup$
    – Pedro Gomes
    Dec 21 '18 at 19:46




















  • $begingroup$
    I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
    $endgroup$
    – Math1000
    Dec 21 '18 at 18:03










  • $begingroup$
    @Math1000 Thanks you are right!
    $endgroup$
    – Pedro Gomes
    Dec 21 '18 at 19:46


















$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03




$begingroup$
I think you have $mu_F((1,3/2))$ reversed - it should be $F(3/2) - F(1)$.
$endgroup$
– Math1000
Dec 21 '18 at 18:03












$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46






$begingroup$
@Math1000 Thanks you are right!
$endgroup$
– Pedro Gomes
Dec 21 '18 at 19:46












1 Answer
1






active

oldest

votes


















1












$begingroup$

Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$
Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$
Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$



To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$
where $0leqdelta<infty.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Dec 22 '18 at 22:10











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048600%2ffinding-f-from-a-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$
Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$
Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$



To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$
where $0leqdelta<infty.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Dec 22 '18 at 22:10
















1












$begingroup$

Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$
Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$
Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$



To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$
where $0leqdelta<infty.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Dec 22 '18 at 22:10














1












1








1





$begingroup$

Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$
Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$
Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$



To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$
where $0leqdelta<infty.$






share|cite|improve this answer









$endgroup$



Note that we cannot determine $F=mu_F((-infty,x])$ uniquely using only given information. Specifically, we cannot determine $F$ on $[3/2,2]$. Notice that
$$
lim_{xto 2}mu_F([2,x)) =1=mu_F(2) = F(2)-F(2^{-}).
$$
Here, $F(x^{-})$ denotes left limit of $F$ at $x$. This means that $F$ has a jump discontinuity of size $1$ at $x=2$. Also, note that
$$
F(x^{-})=mu_F((-infty, x)),quadforall xinmathbb{R}.
$$
Hence $mu_F([2,x))=frac{x}{2}$ means that $F(x^{-})-F(2^{-}) = F(x^{-})-F(2)+1=frac{x}{2}.$ Since $F(x^{-}) = frac{x}{2} +F(2) -1$ is continuous on $x>2$, we have
$$
F(x)=F(x^{-}) = frac{x}{2} +F(2) -1, quadforall x>2.$$



To conclude, $F$ has the following form
$$
F(x) = begin{cases}0 ,quad x<1\1/4,quad x=1\ 5/4,quad x=(frac{3}{2})^{-}\ 5/4+delta ,quad x=2^{-}\9/4+delta,quad x=2\5/4+delta +frac{x}{2},quad x>2,
end{cases}
$$
where $0leqdelta<infty.$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 21 '18 at 20:43









SongSong

16.2k1739




16.2k1739












  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Dec 22 '18 at 22:10


















  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Dec 22 '18 at 22:10
















$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo
Dec 22 '18 at 22:10




$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo
Dec 22 '18 at 22:10


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048600%2ffinding-f-from-a-lebesgue-stieltjes-measure%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen