$int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$???
$begingroup$
I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.
$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.
integration
$endgroup$
add a comment |
$begingroup$
I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.
$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.
integration
$endgroup$
3
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
2
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50
add a comment |
$begingroup$
I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.
$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.
integration
$endgroup$
I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.
$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.
integration
integration
asked Dec 30 '18 at 8:44
clathratusclathratus
5,1701338
5,1701338
3
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
2
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50
add a comment |
3
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
2
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50
3
3
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
2
2
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$
Hence we need $I''(0)$.
Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$
Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$
Substituting $a=0$ in above formula yields the answer.
$endgroup$
add a comment |
$begingroup$
begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}
Observe that,
begin{align}I&=4J\
J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
end{align}
(change of variable $y=dfrac{pi}{2}-x$ )
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
end{align}
Perform the change of variable $y=2x$,
begin{align}
K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
&=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
end{align}
In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
&=J
end{align}
On the other hand,
begin{align}
K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
&=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
&2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
&=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}
Perform the change of variable $x=tan y$,
begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
&=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
&=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
Therefore,
begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
end{align}
Therefore (recall $K=J$),
begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}
On the other hand,
begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}
In the latter integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}
But it is well known that,
begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
end{align}
Therefore,
begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
&=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
end{align}
PS:
See: https://math.stackexchange.com/a/2942594/186817
(in this post i assume only the value of $zeta(4)$ )
$endgroup$
add a comment |
$begingroup$
Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given
$$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
$$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$
Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
$$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.
$endgroup$
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
|
show 2 more comments
$begingroup$
Getting rid of the first roadblock:
Use the fact that $$log(acos x) = log a + logcos x$$
along with the result that
$$
int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
$$
to get
$$
F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
$$
$endgroup$
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{I equiv
int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
{pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$.
begin{align}
I & equiv
bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
,,,stackrel{x mapsto pi/2 - x}{=},,,
4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
\[5mm] & =
left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
,rightvert_{ z = exppars{ic x}}
\[5mm] & =
left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
,rightvert_{ z = exppars{ic x}}
\[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
-, 4,
overbrace{Imint_{1}^{epsilon}ln^{2}
pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
-4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
\[1cm] & =
4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
pars{{pi over 2} - theta}^{2}},ddtheta
-4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
{dd x over x}
\[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
\[5mm] & =
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
2pilnpars{epsilon}lnpars{4epsilon}}
\[5mm] & stackrel{mrm{as} epsilon to 0}{to}
bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
8.1865
end{align}
Note that
$ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
-,mrm{Li}pars{1} = -,{pi^{2} over 6}}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056623%2fint-0-pi-2-log2-cos2x-mathrmdx-frac-pi362-pi-log22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$
Hence we need $I''(0)$.
Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$
Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$
Substituting $a=0$ in above formula yields the answer.
$endgroup$
add a comment |
$begingroup$
Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$
Hence we need $I''(0)$.
Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$
Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$
Substituting $a=0$ in above formula yields the answer.
$endgroup$
add a comment |
$begingroup$
Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$
Hence we need $I''(0)$.
Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$
Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$
Substituting $a=0$ in above formula yields the answer.
$endgroup$
Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$
Hence we need $I''(0)$.
Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$
Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$
Substituting $a=0$ in above formula yields the answer.
answered Dec 30 '18 at 12:04
DarkraiDarkrai
6,4471442
6,4471442
add a comment |
add a comment |
$begingroup$
begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}
Observe that,
begin{align}I&=4J\
J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
end{align}
(change of variable $y=dfrac{pi}{2}-x$ )
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
end{align}
Perform the change of variable $y=2x$,
begin{align}
K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
&=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
end{align}
In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
&=J
end{align}
On the other hand,
begin{align}
K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
&=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
&2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
&=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}
Perform the change of variable $x=tan y$,
begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
&=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
&=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
Therefore,
begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
end{align}
Therefore (recall $K=J$),
begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}
On the other hand,
begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}
In the latter integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}
But it is well known that,
begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
end{align}
Therefore,
begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
&=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
end{align}
PS:
See: https://math.stackexchange.com/a/2942594/186817
(in this post i assume only the value of $zeta(4)$ )
$endgroup$
add a comment |
$begingroup$
begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}
Observe that,
begin{align}I&=4J\
J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
end{align}
(change of variable $y=dfrac{pi}{2}-x$ )
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
end{align}
Perform the change of variable $y=2x$,
begin{align}
K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
&=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
end{align}
In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
&=J
end{align}
On the other hand,
begin{align}
K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
&=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
&2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
&=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}
Perform the change of variable $x=tan y$,
begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
&=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
&=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
Therefore,
begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
end{align}
Therefore (recall $K=J$),
begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}
On the other hand,
begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}
In the latter integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}
But it is well known that,
begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
end{align}
Therefore,
begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
&=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
end{align}
PS:
See: https://math.stackexchange.com/a/2942594/186817
(in this post i assume only the value of $zeta(4)$ )
$endgroup$
add a comment |
$begingroup$
begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}
Observe that,
begin{align}I&=4J\
J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
end{align}
(change of variable $y=dfrac{pi}{2}-x$ )
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
end{align}
Perform the change of variable $y=2x$,
begin{align}
K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
&=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
end{align}
In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
&=J
end{align}
On the other hand,
begin{align}
K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
&=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
&2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
&=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}
Perform the change of variable $x=tan y$,
begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
&=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
&=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
Therefore,
begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
end{align}
Therefore (recall $K=J$),
begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}
On the other hand,
begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}
In the latter integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}
But it is well known that,
begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
end{align}
Therefore,
begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
&=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
end{align}
PS:
See: https://math.stackexchange.com/a/2942594/186817
(in this post i assume only the value of $zeta(4)$ )
$endgroup$
begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}
Observe that,
begin{align}I&=4J\
J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
end{align}
(change of variable $y=dfrac{pi}{2}-x$ )
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
end{align}
Perform the change of variable $y=2x$,
begin{align}
K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
&=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
end{align}
In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,
begin{align}
K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
&=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
&=J
end{align}
On the other hand,
begin{align}
K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
&=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
&2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
&=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}
Perform the change of variable $x=tan y$,
begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
&=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
&=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
end{align}
Therefore,
begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
end{align}
Therefore (recall $K=J$),
begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}
On the other hand,
begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}
In the latter integral perform the change of variable $y=dfrac{1}{x}$,
begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}
But it is well known that,
begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
end{align}
Therefore,
begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
&=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
end{align}
PS:
See: https://math.stackexchange.com/a/2942594/186817
(in this post i assume only the value of $zeta(4)$ )
edited Dec 31 '18 at 10:44
answered Dec 31 '18 at 10:31
FDPFDP
6,17211829
6,17211829
add a comment |
add a comment |
$begingroup$
Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given
$$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
$$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$
Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
$$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.
$endgroup$
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
|
show 2 more comments
$begingroup$
Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given
$$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
$$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$
Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
$$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.
$endgroup$
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
|
show 2 more comments
$begingroup$
Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given
$$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
$$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$
Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
$$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.
$endgroup$
Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given
$$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
$$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$
Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
$$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.
edited Dec 31 '18 at 17:32
answered Dec 30 '18 at 9:48
Jack D'AurizioJack D'Aurizio
291k33284669
291k33284669
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
|
show 2 more comments
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
Yeah you're gonna have to explain this a bit more
$endgroup$
– clathratus
Dec 30 '18 at 9:51
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
@ClementC.: of course, now fixed.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 10:44
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
$begingroup$
OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
$endgroup$
– Clement C.
Dec 30 '18 at 10:57
1
1
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 14:11
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
$begingroup$
@JackDAurizio Ah. Thanks.
$endgroup$
– Clement C.
Dec 30 '18 at 16:10
|
show 2 more comments
$begingroup$
Getting rid of the first roadblock:
Use the fact that $$log(acos x) = log a + logcos x$$
along with the result that
$$
int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
$$
to get
$$
F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
$$
$endgroup$
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
add a comment |
$begingroup$
Getting rid of the first roadblock:
Use the fact that $$log(acos x) = log a + logcos x$$
along with the result that
$$
int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
$$
to get
$$
F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
$$
$endgroup$
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
add a comment |
$begingroup$
Getting rid of the first roadblock:
Use the fact that $$log(acos x) = log a + logcos x$$
along with the result that
$$
int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
$$
to get
$$
F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
$$
$endgroup$
Getting rid of the first roadblock:
Use the fact that $$log(acos x) = log a + logcos x$$
along with the result that
$$
int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
$$
to get
$$
F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
$$
answered Dec 30 '18 at 8:53
Clement C.Clement C.
50.9k33992
50.9k33992
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
add a comment |
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
$begingroup$
Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
$endgroup$
– Clement C.
Dec 30 '18 at 8:58
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{I equiv
int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
{pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$.
begin{align}
I & equiv
bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
,,,stackrel{x mapsto pi/2 - x}{=},,,
4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
\[5mm] & =
left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
,rightvert_{ z = exppars{ic x}}
\[5mm] & =
left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
,rightvert_{ z = exppars{ic x}}
\[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
-, 4,
overbrace{Imint_{1}^{epsilon}ln^{2}
pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
-4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
\[1cm] & =
4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
pars{{pi over 2} - theta}^{2}},ddtheta
-4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
{dd x over x}
\[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
\[5mm] & =
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
2pilnpars{epsilon}lnpars{4epsilon}}
\[5mm] & stackrel{mrm{as} epsilon to 0}{to}
bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
8.1865
end{align}
Note that
$ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
-,mrm{Li}pars{1} = -,{pi^{2} over 6}}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{I equiv
int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
{pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$.
begin{align}
I & equiv
bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
,,,stackrel{x mapsto pi/2 - x}{=},,,
4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
\[5mm] & =
left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
,rightvert_{ z = exppars{ic x}}
\[5mm] & =
left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
,rightvert_{ z = exppars{ic x}}
\[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
-, 4,
overbrace{Imint_{1}^{epsilon}ln^{2}
pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
-4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
\[1cm] & =
4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
pars{{pi over 2} - theta}^{2}},ddtheta
-4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
{dd x over x}
\[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
\[5mm] & =
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
2pilnpars{epsilon}lnpars{4epsilon}}
\[5mm] & stackrel{mrm{as} epsilon to 0}{to}
bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
8.1865
end{align}
Note that
$ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
-,mrm{Li}pars{1} = -,{pi^{2} over 6}}$.
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{I equiv
int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
{pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$.
begin{align}
I & equiv
bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
,,,stackrel{x mapsto pi/2 - x}{=},,,
4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
\[5mm] & =
left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
,rightvert_{ z = exppars{ic x}}
\[5mm] & =
left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
,rightvert_{ z = exppars{ic x}}
\[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
-, 4,
overbrace{Imint_{1}^{epsilon}ln^{2}
pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
-4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
\[1cm] & =
4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
pars{{pi over 2} - theta}^{2}},ddtheta
-4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
{dd x over x}
\[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
\[5mm] & =
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
2pilnpars{epsilon}lnpars{4epsilon}}
\[5mm] & stackrel{mrm{as} epsilon to 0}{to}
bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
8.1865
end{align}
Note that
$ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
-,mrm{Li}pars{1} = -,{pi^{2} over 6}}$.
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{I equiv
int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
{pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$.
begin{align}
I & equiv
bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
,,,stackrel{x mapsto pi/2 - x}{=},,,
4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
\[5mm] & =
left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
,rightvert_{ z = exppars{ic x}}
\[5mm] & =
left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
,rightvert_{ z = exppars{ic x}}
\[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
-, 4,
overbrace{Imint_{1}^{epsilon}ln^{2}
pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
\[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
-4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
\[1cm] & =
4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
pars{{pi over 2} - theta}^{2}},ddtheta
-4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
{dd x over x}
\[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
\[5mm] & =
bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
2pilnpars{epsilon}lnpars{4epsilon}}
\[5mm] & stackrel{mrm{as} epsilon to 0}{to}
bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
8.1865
end{align}
Note that
$ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
-,mrm{Li}pars{1} = -,{pi^{2} over 6}}$.
answered Jan 2 at 21:40
Felix MarinFelix Marin
68.8k7109146
68.8k7109146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056623%2fint-0-pi-2-log2-cos2x-mathrmdx-frac-pi362-pi-log22%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47
2
$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50