The Picard-Lindelöf theorem on Wikipedia












0












$begingroup$


On the Wikipedia entry of Picard-Lindelöf theorem for the local existence and uniqueness of ODE's, there is a section on the optimization of the solution's interval.



There is a lemma used in this section which says
$$
|| Gamma^m varphi_1 - Gamma^m varphi_2 || leq dfrac{L^m alpha^m}{m!} ||varphi_1 - varphi_2 ||
$$
Please see the article for the definition of symbols above.



I can not get the $m!$ term in the denominator and believe that the lemma is wrong. Am I right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    There is also a proof given in the section you cite. Have you read it? Where do you disagree?
    $endgroup$
    – martini
    Jul 15 '14 at 10:03










  • $begingroup$
    m! term should not appear in the denominator.
    $endgroup$
    – pitonist
    Jul 15 '14 at 10:07






  • 1




    $begingroup$
    I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
    $endgroup$
    – daw
    Jul 15 '14 at 10:20
















0












$begingroup$


On the Wikipedia entry of Picard-Lindelöf theorem for the local existence and uniqueness of ODE's, there is a section on the optimization of the solution's interval.



There is a lemma used in this section which says
$$
|| Gamma^m varphi_1 - Gamma^m varphi_2 || leq dfrac{L^m alpha^m}{m!} ||varphi_1 - varphi_2 ||
$$
Please see the article for the definition of symbols above.



I can not get the $m!$ term in the denominator and believe that the lemma is wrong. Am I right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    There is also a proof given in the section you cite. Have you read it? Where do you disagree?
    $endgroup$
    – martini
    Jul 15 '14 at 10:03










  • $begingroup$
    m! term should not appear in the denominator.
    $endgroup$
    – pitonist
    Jul 15 '14 at 10:07






  • 1




    $begingroup$
    I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
    $endgroup$
    – daw
    Jul 15 '14 at 10:20














0












0








0





$begingroup$


On the Wikipedia entry of Picard-Lindelöf theorem for the local existence and uniqueness of ODE's, there is a section on the optimization of the solution's interval.



There is a lemma used in this section which says
$$
|| Gamma^m varphi_1 - Gamma^m varphi_2 || leq dfrac{L^m alpha^m}{m!} ||varphi_1 - varphi_2 ||
$$
Please see the article for the definition of symbols above.



I can not get the $m!$ term in the denominator and believe that the lemma is wrong. Am I right?










share|cite|improve this question











$endgroup$




On the Wikipedia entry of Picard-Lindelöf theorem for the local existence and uniqueness of ODE's, there is a section on the optimization of the solution's interval.



There is a lemma used in this section which says
$$
|| Gamma^m varphi_1 - Gamma^m varphi_2 || leq dfrac{L^m alpha^m}{m!} ||varphi_1 - varphi_2 ||
$$
Please see the article for the definition of symbols above.



I can not get the $m!$ term in the denominator and believe that the lemma is wrong. Am I right?







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 30 '15 at 11:49









Jyrki Lahtonen

110k13171386




110k13171386










asked Jul 15 '14 at 9:56









pitonistpitonist

7918




7918












  • $begingroup$
    There is also a proof given in the section you cite. Have you read it? Where do you disagree?
    $endgroup$
    – martini
    Jul 15 '14 at 10:03










  • $begingroup$
    m! term should not appear in the denominator.
    $endgroup$
    – pitonist
    Jul 15 '14 at 10:07






  • 1




    $begingroup$
    I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
    $endgroup$
    – daw
    Jul 15 '14 at 10:20


















  • $begingroup$
    There is also a proof given in the section you cite. Have you read it? Where do you disagree?
    $endgroup$
    – martini
    Jul 15 '14 at 10:03










  • $begingroup$
    m! term should not appear in the denominator.
    $endgroup$
    – pitonist
    Jul 15 '14 at 10:07






  • 1




    $begingroup$
    I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
    $endgroup$
    – daw
    Jul 15 '14 at 10:20
















$begingroup$
There is also a proof given in the section you cite. Have you read it? Where do you disagree?
$endgroup$
– martini
Jul 15 '14 at 10:03




$begingroup$
There is also a proof given in the section you cite. Have you read it? Where do you disagree?
$endgroup$
– martini
Jul 15 '14 at 10:03












$begingroup$
m! term should not appear in the denominator.
$endgroup$
– pitonist
Jul 15 '14 at 10:07




$begingroup$
m! term should not appear in the denominator.
$endgroup$
– pitonist
Jul 15 '14 at 10:07




1




1




$begingroup$
I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
$endgroup$
– daw
Jul 15 '14 at 10:20




$begingroup$
I think one should replace the claim $$ |Gamma^m phi_1 - Gamma^m phi_2 | le frac{ L^m alpha^m}{m!}|phi_1-phi_2| $$ by $$ |Gamma^m phi_1(s) - Gamma^m phi_2(s) | le frac{ L^m}{m!}(s-t_0)^m|phi_1-phi_2| quad forall sin(t_0,t_0+a). $$ Very sloppy proof there.
$endgroup$
– daw
Jul 15 '14 at 10:20










1 Answer
1






active

oldest

votes


















0












$begingroup$

First, let's prove this:
$$
|| Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
$$



With $m = 1$, is trivial. If the induction hypothesis is:



$$|| Gamma^{m-1} varphi_1(t) - Gamma^{m-1} varphi_2(t) || leq dfrac{L^{m-1} |t-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 ||, forall t in I_a
$$



Then $forall t in I_a$:



begin{align}
|| Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || = left|left| GammaGamma^{m-1} varphi_1(t) - Gamma Gamma^{m-1} varphi_2(t) right|right| &= left|left| int_{t_0}^{t} fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) ds right|right| \
&leq left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
end{align}

But $f$ is Lipschitz in $I_a times B_b$ in the second variable with $L$ as Lipschitz constant. Then:



begin{align}
left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
&leq
L left| int_{t_0}^{t} left|left| Gamma^{m-1} varphi_1(s) - Gamma^{m-1} varphi_2(s) right|right| ds right| \
end{align}



And by induction hypothesis:



begin{align}
left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
&leq
L left| int_{t_0}^{t} dfrac{L^{m-1} |s-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 || ds right| \
&leq
dfrac{L^m}{(m-1)!} left| int_{t_0}^{t} |s-t_0|^{m-1} ||varphi_1 - varphi_2 || ds right| \
&leq
frac{L^m|t-t_0|^m}{m!} ||varphi_1 - varphi_2 || \
end{align}

Then the previous proposition is right, now:
begin{align}
|| Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 || leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
end{align}

Then:
begin{align}
textrm{sup} left{ || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || : t in I_a right} &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a \
|| Gamma^{m} varphi_1 - Gamma^{m} varphi_2 || &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||
end{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f867801%2fthe-picard-lindel%25c3%25b6f-theorem-on-wikipedia%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    First, let's prove this:
    $$
    || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
    $$



    With $m = 1$, is trivial. If the induction hypothesis is:



    $$|| Gamma^{m-1} varphi_1(t) - Gamma^{m-1} varphi_2(t) || leq dfrac{L^{m-1} |t-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 ||, forall t in I_a
    $$



    Then $forall t in I_a$:



    begin{align}
    || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || = left|left| GammaGamma^{m-1} varphi_1(t) - Gamma Gamma^{m-1} varphi_2(t) right|right| &= left|left| int_{t_0}^{t} fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) ds right|right| \
    &leq left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
    end{align}

    But $f$ is Lipschitz in $I_a times B_b$ in the second variable with $L$ as Lipschitz constant. Then:



    begin{align}
    left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
    &leq
    L left| int_{t_0}^{t} left|left| Gamma^{m-1} varphi_1(s) - Gamma^{m-1} varphi_2(s) right|right| ds right| \
    end{align}



    And by induction hypothesis:



    begin{align}
    left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
    &leq
    L left| int_{t_0}^{t} dfrac{L^{m-1} |s-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 || ds right| \
    &leq
    dfrac{L^m}{(m-1)!} left| int_{t_0}^{t} |s-t_0|^{m-1} ||varphi_1 - varphi_2 || ds right| \
    &leq
    frac{L^m|t-t_0|^m}{m!} ||varphi_1 - varphi_2 || \
    end{align}

    Then the previous proposition is right, now:
    begin{align}
    || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 || leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
    end{align}

    Then:
    begin{align}
    textrm{sup} left{ || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || : t in I_a right} &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a \
    || Gamma^{m} varphi_1 - Gamma^{m} varphi_2 || &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||
    end{align}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      First, let's prove this:
      $$
      || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
      $$



      With $m = 1$, is trivial. If the induction hypothesis is:



      $$|| Gamma^{m-1} varphi_1(t) - Gamma^{m-1} varphi_2(t) || leq dfrac{L^{m-1} |t-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 ||, forall t in I_a
      $$



      Then $forall t in I_a$:



      begin{align}
      || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || = left|left| GammaGamma^{m-1} varphi_1(t) - Gamma Gamma^{m-1} varphi_2(t) right|right| &= left|left| int_{t_0}^{t} fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) ds right|right| \
      &leq left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
      end{align}

      But $f$ is Lipschitz in $I_a times B_b$ in the second variable with $L$ as Lipschitz constant. Then:



      begin{align}
      left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
      &leq
      L left| int_{t_0}^{t} left|left| Gamma^{m-1} varphi_1(s) - Gamma^{m-1} varphi_2(s) right|right| ds right| \
      end{align}



      And by induction hypothesis:



      begin{align}
      left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
      &leq
      L left| int_{t_0}^{t} dfrac{L^{m-1} |s-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 || ds right| \
      &leq
      dfrac{L^m}{(m-1)!} left| int_{t_0}^{t} |s-t_0|^{m-1} ||varphi_1 - varphi_2 || ds right| \
      &leq
      frac{L^m|t-t_0|^m}{m!} ||varphi_1 - varphi_2 || \
      end{align}

      Then the previous proposition is right, now:
      begin{align}
      || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 || leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
      end{align}

      Then:
      begin{align}
      textrm{sup} left{ || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || : t in I_a right} &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a \
      || Gamma^{m} varphi_1 - Gamma^{m} varphi_2 || &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||
      end{align}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        First, let's prove this:
        $$
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
        $$



        With $m = 1$, is trivial. If the induction hypothesis is:



        $$|| Gamma^{m-1} varphi_1(t) - Gamma^{m-1} varphi_2(t) || leq dfrac{L^{m-1} |t-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 ||, forall t in I_a
        $$



        Then $forall t in I_a$:



        begin{align}
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || = left|left| GammaGamma^{m-1} varphi_1(t) - Gamma Gamma^{m-1} varphi_2(t) right|right| &= left|left| int_{t_0}^{t} fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) ds right|right| \
        &leq left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        end{align}

        But $f$ is Lipschitz in $I_a times B_b$ in the second variable with $L$ as Lipschitz constant. Then:



        begin{align}
        left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        &leq
        L left| int_{t_0}^{t} left|left| Gamma^{m-1} varphi_1(s) - Gamma^{m-1} varphi_2(s) right|right| ds right| \
        end{align}



        And by induction hypothesis:



        begin{align}
        left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        &leq
        L left| int_{t_0}^{t} dfrac{L^{m-1} |s-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 || ds right| \
        &leq
        dfrac{L^m}{(m-1)!} left| int_{t_0}^{t} |s-t_0|^{m-1} ||varphi_1 - varphi_2 || ds right| \
        &leq
        frac{L^m|t-t_0|^m}{m!} ||varphi_1 - varphi_2 || \
        end{align}

        Then the previous proposition is right, now:
        begin{align}
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 || leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
        end{align}

        Then:
        begin{align}
        textrm{sup} left{ || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || : t in I_a right} &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a \
        || Gamma^{m} varphi_1 - Gamma^{m} varphi_2 || &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||
        end{align}






        share|cite|improve this answer









        $endgroup$



        First, let's prove this:
        $$
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
        $$



        With $m = 1$, is trivial. If the induction hypothesis is:



        $$|| Gamma^{m-1} varphi_1(t) - Gamma^{m-1} varphi_2(t) || leq dfrac{L^{m-1} |t-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 ||, forall t in I_a
        $$



        Then $forall t in I_a$:



        begin{align}
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || = left|left| GammaGamma^{m-1} varphi_1(t) - Gamma Gamma^{m-1} varphi_2(t) right|right| &= left|left| int_{t_0}^{t} fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) ds right|right| \
        &leq left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        end{align}

        But $f$ is Lipschitz in $I_a times B_b$ in the second variable with $L$ as Lipschitz constant. Then:



        begin{align}
        left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        &leq
        L left| int_{t_0}^{t} left|left| Gamma^{m-1} varphi_1(s) - Gamma^{m-1} varphi_2(s) right|right| ds right| \
        end{align}



        And by induction hypothesis:



        begin{align}
        left| int_{t_0}^{t} left|left| fleft(s,Gamma^{m-1} varphi_1(s) right) - fleft(s,Gamma^{m-1} varphi_2(s) right) right|right| ds right|
        &leq
        L left| int_{t_0}^{t} dfrac{L^{m-1} |s-t_0|^{m-1}}{(m-1)!} ||varphi_1 - varphi_2 || ds right| \
        &leq
        dfrac{L^m}{(m-1)!} left| int_{t_0}^{t} |s-t_0|^{m-1} ||varphi_1 - varphi_2 || ds right| \
        &leq
        frac{L^m|t-t_0|^m}{m!} ||varphi_1 - varphi_2 || \
        end{align}

        Then the previous proposition is right, now:
        begin{align}
        || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || leq dfrac{L^{m} |t-t_0|^{m}}{m!} ||varphi_1 - varphi_2 || leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a
        end{align}

        Then:
        begin{align}
        textrm{sup} left{ || Gamma^{m} varphi_1(t) - Gamma^{m} varphi_2(t) || : t in I_a right} &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||, forall t in I_a \
        || Gamma^{m} varphi_1 - Gamma^{m} varphi_2 || &leq dfrac{L^{m} a^{m}}{m!} ||varphi_1 - varphi_2 ||
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 30 '18 at 7:31









        El boritoEl borito

        666216




        666216






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f867801%2fthe-picard-lindel%25c3%25b6f-theorem-on-wikipedia%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen