CR holomorphic functions












0












$begingroup$


Let $Omega subset mathbb{C}$ be a domain, $mathcal{O}(Omega)$ denote holomorphic functions on $Omega$ and $mathcal{C}^{infty}(overline{Omega})$ functions smooth up to the boundary.



I'm struggling with the following isomorphism:
$${mbox{CR hol. functions on } partialOmega =: M} cong mathcal{O}left(Omegaright) ;cap; mathcal{C}^{infty}(overline{Omega}).$$



I've noticed that one inlcusion follows from the Hartogs theorem, but I have no idea how to show the other part of the statement.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
    $endgroup$
    – reuns
    Jan 8 at 8:50


















0












$begingroup$


Let $Omega subset mathbb{C}$ be a domain, $mathcal{O}(Omega)$ denote holomorphic functions on $Omega$ and $mathcal{C}^{infty}(overline{Omega})$ functions smooth up to the boundary.



I'm struggling with the following isomorphism:
$${mbox{CR hol. functions on } partialOmega =: M} cong mathcal{O}left(Omegaright) ;cap; mathcal{C}^{infty}(overline{Omega}).$$



I've noticed that one inlcusion follows from the Hartogs theorem, but I have no idea how to show the other part of the statement.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
    $endgroup$
    – reuns
    Jan 8 at 8:50
















0












0








0





$begingroup$


Let $Omega subset mathbb{C}$ be a domain, $mathcal{O}(Omega)$ denote holomorphic functions on $Omega$ and $mathcal{C}^{infty}(overline{Omega})$ functions smooth up to the boundary.



I'm struggling with the following isomorphism:
$${mbox{CR hol. functions on } partialOmega =: M} cong mathcal{O}left(Omegaright) ;cap; mathcal{C}^{infty}(overline{Omega}).$$



I've noticed that one inlcusion follows from the Hartogs theorem, but I have no idea how to show the other part of the statement.










share|cite|improve this question









$endgroup$




Let $Omega subset mathbb{C}$ be a domain, $mathcal{O}(Omega)$ denote holomorphic functions on $Omega$ and $mathcal{C}^{infty}(overline{Omega})$ functions smooth up to the boundary.



I'm struggling with the following isomorphism:
$${mbox{CR hol. functions on } partialOmega =: M} cong mathcal{O}left(Omegaright) ;cap; mathcal{C}^{infty}(overline{Omega}).$$



I've noticed that one inlcusion follows from the Hartogs theorem, but I have no idea how to show the other part of the statement.







differential-geometry complex-geometry holomorphic-functions complex-manifolds






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 8 at 4:57







user626292



















  • $begingroup$
    What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
    $endgroup$
    – reuns
    Jan 8 at 8:50




















  • $begingroup$
    What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
    $endgroup$
    – reuns
    Jan 8 at 8:50


















$begingroup$
What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
$endgroup$
– reuns
Jan 8 at 8:50






$begingroup$
What means ${mbox{CR hol. functions on } partialOmega =: M}$ ? With $D$ the unit disk then $mathcal{O}(D)cap C^infty(overline{D}) ={ sum_{n=0}^infty a_n z^n, forall k, sum_{n=0}^infty |a_n n^k| < infty}= { int_{partial D} frac{h(s)}{s-z}ds, hin C^infty(partial D)}$. Something similar holds for $partial Omega$ smooth and of finite length
$endgroup$
– reuns
Jan 8 at 8:50












0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065814%2fcr-holomorphic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065814%2fcr-holomorphic-functions%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

To store a contact into the json file from server.js file using a class in NodeJS

Redirect URL with Chrome Remote Debugging Android Devices

Dieringhausen