Taylor series of a complex Gaussian function












0












$begingroup$


The first few terms of Taylor series at $a=0$ of the Gaussian function $e^{-(x-a)^2}$ when $x$ is real are:



$$e^{-x^2}+aleft(2xe^{-x^2}right)+a^2(2x^2-1)e^{-x^2}+...$$



I am wondering if one can take the "Taylor series" at $a=0$ for the complex Gaussian function $e^{-|x-a|^2}$. Will it have the following form?



$$e^{-|x|^2}+aleft(2xe^{-|x|^2}right)+|a|^2(2|x|^2-1)e^{-|x|^2}+...$$



I'm trying to approximate complex Gaussian around $a=0$, but am really stumbling around in the dark here, having never taken the course on complex analysis. I read about the relevant part of the wiki article on Taylor series, but am confused. Any help would be appreciated.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
    $endgroup$
    – kimchi lover
    Jan 8 at 3:45










  • $begingroup$
    Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
    $endgroup$
    – Robert Israel
    Jan 8 at 4:07










  • $begingroup$
    @RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
    $endgroup$
    – HellRazor
    Jan 8 at 5:31










  • $begingroup$
    Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
    $endgroup$
    – Robert Israel
    Jan 8 at 16:22












  • $begingroup$
    $$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
    $endgroup$
    – Robert Israel
    Jan 8 at 16:26
















0












$begingroup$


The first few terms of Taylor series at $a=0$ of the Gaussian function $e^{-(x-a)^2}$ when $x$ is real are:



$$e^{-x^2}+aleft(2xe^{-x^2}right)+a^2(2x^2-1)e^{-x^2}+...$$



I am wondering if one can take the "Taylor series" at $a=0$ for the complex Gaussian function $e^{-|x-a|^2}$. Will it have the following form?



$$e^{-|x|^2}+aleft(2xe^{-|x|^2}right)+|a|^2(2|x|^2-1)e^{-|x|^2}+...$$



I'm trying to approximate complex Gaussian around $a=0$, but am really stumbling around in the dark here, having never taken the course on complex analysis. I read about the relevant part of the wiki article on Taylor series, but am confused. Any help would be appreciated.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
    $endgroup$
    – kimchi lover
    Jan 8 at 3:45










  • $begingroup$
    Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
    $endgroup$
    – Robert Israel
    Jan 8 at 4:07










  • $begingroup$
    @RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
    $endgroup$
    – HellRazor
    Jan 8 at 5:31










  • $begingroup$
    Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
    $endgroup$
    – Robert Israel
    Jan 8 at 16:22












  • $begingroup$
    $$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
    $endgroup$
    – Robert Israel
    Jan 8 at 16:26














0












0








0





$begingroup$


The first few terms of Taylor series at $a=0$ of the Gaussian function $e^{-(x-a)^2}$ when $x$ is real are:



$$e^{-x^2}+aleft(2xe^{-x^2}right)+a^2(2x^2-1)e^{-x^2}+...$$



I am wondering if one can take the "Taylor series" at $a=0$ for the complex Gaussian function $e^{-|x-a|^2}$. Will it have the following form?



$$e^{-|x|^2}+aleft(2xe^{-|x|^2}right)+|a|^2(2|x|^2-1)e^{-|x|^2}+...$$



I'm trying to approximate complex Gaussian around $a=0$, but am really stumbling around in the dark here, having never taken the course on complex analysis. I read about the relevant part of the wiki article on Taylor series, but am confused. Any help would be appreciated.










share|cite|improve this question









$endgroup$




The first few terms of Taylor series at $a=0$ of the Gaussian function $e^{-(x-a)^2}$ when $x$ is real are:



$$e^{-x^2}+aleft(2xe^{-x^2}right)+a^2(2x^2-1)e^{-x^2}+...$$



I am wondering if one can take the "Taylor series" at $a=0$ for the complex Gaussian function $e^{-|x-a|^2}$. Will it have the following form?



$$e^{-|x|^2}+aleft(2xe^{-|x|^2}right)+|a|^2(2|x|^2-1)e^{-|x|^2}+...$$



I'm trying to approximate complex Gaussian around $a=0$, but am really stumbling around in the dark here, having never taken the course on complex analysis. I read about the relevant part of the wiki article on Taylor series, but am confused. Any help would be appreciated.







complex-analysis taylor-expansion






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 8 at 3:41









HellRazorHellRazor

16619




16619








  • 3




    $begingroup$
    Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
    $endgroup$
    – kimchi lover
    Jan 8 at 3:45










  • $begingroup$
    Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
    $endgroup$
    – Robert Israel
    Jan 8 at 4:07










  • $begingroup$
    @RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
    $endgroup$
    – HellRazor
    Jan 8 at 5:31










  • $begingroup$
    Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
    $endgroup$
    – Robert Israel
    Jan 8 at 16:22












  • $begingroup$
    $$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
    $endgroup$
    – Robert Israel
    Jan 8 at 16:26














  • 3




    $begingroup$
    Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
    $endgroup$
    – kimchi lover
    Jan 8 at 3:45










  • $begingroup$
    Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
    $endgroup$
    – Robert Israel
    Jan 8 at 4:07










  • $begingroup$
    @RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
    $endgroup$
    – HellRazor
    Jan 8 at 5:31










  • $begingroup$
    Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
    $endgroup$
    – Robert Israel
    Jan 8 at 16:22












  • $begingroup$
    $$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
    $endgroup$
    – Robert Israel
    Jan 8 at 16:26








3




3




$begingroup$
Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
$endgroup$
– kimchi lover
Jan 8 at 3:45




$begingroup$
Do you really mean $|x-a|^2$ instead of $(x-a)^2$ here?
$endgroup$
– kimchi lover
Jan 8 at 3:45












$begingroup$
Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
$endgroup$
– Robert Israel
Jan 8 at 4:07




$begingroup$
Taylor series require analytic functions. In general, absolute values lead to non-analytic functions in the complex plane. In particular, $e^{-|x-a|^2}$ is always real, and no analytic functions are real except constants.
$endgroup$
– Robert Israel
Jan 8 at 4:07












$begingroup$
@RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
$endgroup$
– HellRazor
Jan 8 at 5:31




$begingroup$
@RobertIsrael Hmm, I see -- thanks for clarification on analytic functions. I think instead of what I wrote I need a Taylor series of a bivariate function $e^{-(x_i-a_i)^2-(x_q-a_q)^2}$ where $x=x_i+ix_q$ and $a=a_a+ia_q$ (subscripts "i" and "q" denote in-phase and quadrature components of complex numbers).
$endgroup$
– HellRazor
Jan 8 at 5:31












$begingroup$
Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
$endgroup$
– Robert Israel
Jan 8 at 16:22






$begingroup$
Again, this is always real, and thus non-analytic as a function of the complex variable $a$. On the other hand, you could regard $a_i$ and $a_q$ as separate variables, and do a multivariate Taylor expansion as a function of them.
$endgroup$
– Robert Israel
Jan 8 at 16:22














$begingroup$
$$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
$endgroup$
– Robert Israel
Jan 8 at 16:26




$begingroup$
$$ {{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}}+2,{{rm e}^{-{x_{{i}}}^{2}-{ x_{{q}}}^{2}}}x_{{i}}a_{{i}}+2,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2} }}x_{{q}}a_{{q}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q}}}^{2}}} left( 2,{x _{{i}}}^{2}-1 right) {a_{{i}}}^{2}+4,{{rm e}^{-{x_{{i}}}^{2}-{x_{{q }}}^{2}}}x_{{i}}x_{{q}}a_{{q}}a_{{i}}+{{rm e}^{-{x_{{i}}}^{2}-{x_{{q} }}^{2}}} left( 2,{x_{{q}}}^{2}-1 right) {a_{{q}}}^{2} +ldots$$
$endgroup$
– Robert Israel
Jan 8 at 16:26










0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065781%2ftaylor-series-of-a-complex-gaussian-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065781%2ftaylor-series-of-a-complex-gaussian-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen