How to calculate the probability in the following problem?
Multi tool use
$begingroup$
Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.
Is my following approach true?
Let $X$ be a random variable in $Bbb{Z}_{256}$, then
$Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?
I am not sure the above approach true or not.
probability polynomials integers
$endgroup$
add a comment |
$begingroup$
Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.
Is my following approach true?
Let $X$ be a random variable in $Bbb{Z}_{256}$, then
$Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?
I am not sure the above approach true or not.
probability polynomials integers
$endgroup$
add a comment |
$begingroup$
Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.
Is my following approach true?
Let $X$ be a random variable in $Bbb{Z}_{256}$, then
$Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?
I am not sure the above approach true or not.
probability polynomials integers
$endgroup$
Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.
Is my following approach true?
Let $X$ be a random variable in $Bbb{Z}_{256}$, then
$Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?
I am not sure the above approach true or not.
probability polynomials integers
probability polynomials integers
edited Jan 8 at 3:35
MKS
asked Jan 8 at 3:29
MKSMKS
62
62
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065778%2fhow-to-calculate-the-probability-in-the-following-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065778%2fhow-to-calculate-the-probability-in-the-following-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2ls0tUTrys5,Im es