How to calculate the probability in the following problem?












0












$begingroup$


Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.



Is my following approach true?

Let $X$ be a random variable in $Bbb{Z}_{256}$, then
$Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?



I am not sure the above approach true or not.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.



    Is my following approach true?

    Let $X$ be a random variable in $Bbb{Z}_{256}$, then
    $Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?



    I am not sure the above approach true or not.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.



      Is my following approach true?

      Let $X$ be a random variable in $Bbb{Z}_{256}$, then
      $Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?



      I am not sure the above approach true or not.










      share|cite|improve this question











      $endgroup$




      Let us consider $f(x)=202+37x+243x^2+a_3x^3$$pmod{257}$, where $a_3$ is randomly chosen from $Bbb{Z}_{257}$. I want to calculate all such $S={f(1),f(2),dots, f(n)}, n<255$ such that $f(t)leq 255$ for all $t=1,2,dots, n$. If $f(t)>255$ for some $t$, then we regerate $a_3$ and this process will continue untill all $f(t)leq 255$. Then what is the probability $Pr(f(t)=r)=?$, $0leq r<257$.



      Is my following approach true?

      Let $X$ be a random variable in $Bbb{Z}_{256}$, then
      $Pr(X=rpmod{256})=Pr(X=0pmod{257})Pr(X=0pmod{256})+Pr(X=1pmod{257})Pr(X=1pmod{256})+Pr(Xneq 0,256pmod{257})Pr(Xneq 0,256pmod{256})$?



      I am not sure the above approach true or not.







      probability polynomials integers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 8 at 3:35







      MKS

















      asked Jan 8 at 3:29









      MKSMKS

      62




      62






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065778%2fhow-to-calculate-the-probability-in-the-following-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065778%2fhow-to-calculate-the-probability-in-the-following-problem%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen