An AMM-like integral $int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx$











up vote
7
down vote

favorite
7













How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$




I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$

I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.










share|cite|improve this question






















  • Just wondering: Why do you want to calculate this (by hand)
    – klirk
    Nov 20 at 20:38










  • @klirk Just an interest.
    – Kemono Chen
    Nov 21 at 0:18










  • $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
    – user178256
    2 days ago















up vote
7
down vote

favorite
7













How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$




I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$

I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.










share|cite|improve this question






















  • Just wondering: Why do you want to calculate this (by hand)
    – klirk
    Nov 20 at 20:38










  • @klirk Just an interest.
    – Kemono Chen
    Nov 21 at 0:18










  • $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
    – user178256
    2 days ago













up vote
7
down vote

favorite
7









up vote
7
down vote

favorite
7






7






How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$




I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$

I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.










share|cite|improve this question














How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$




I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$

I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.







calculus integration definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 20 at 9:20









Kemono Chen

1,606330




1,606330












  • Just wondering: Why do you want to calculate this (by hand)
    – klirk
    Nov 20 at 20:38










  • @klirk Just an interest.
    – Kemono Chen
    Nov 21 at 0:18










  • $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
    – user178256
    2 days ago


















  • Just wondering: Why do you want to calculate this (by hand)
    – klirk
    Nov 20 at 20:38










  • @klirk Just an interest.
    – Kemono Chen
    Nov 21 at 0:18










  • $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
    – user178256
    2 days ago
















Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38




Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38












@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18




@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18












$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago




$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago










2 Answers
2






active

oldest

votes

















up vote
3
down vote



accepted










$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}

We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}

begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}

And the result is proved.






share|cite|improve this answer



















  • 1




    (+1) Very neat.
    – nospoon
    2 days ago


















up vote
1
down vote













Through the dilogarithm/trilogarithm machinery it can be shown that



$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.






share|cite|improve this answer





















  • Thank you for the great answer. :) But I prefer a solution without brute force.
    – Kemono Chen
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006106%2fan-amm-like-integral-int-01-frac-arctan-xx-ln-frac1x231x2dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote



accepted










$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}

We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}

begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}

And the result is proved.






share|cite|improve this answer



















  • 1




    (+1) Very neat.
    – nospoon
    2 days ago















up vote
3
down vote



accepted










$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}

We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}

begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}

And the result is proved.






share|cite|improve this answer



















  • 1




    (+1) Very neat.
    – nospoon
    2 days ago













up vote
3
down vote



accepted







up vote
3
down vote



accepted






$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}

We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}

begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}

And the result is proved.






share|cite|improve this answer














$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}

We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}

begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}

And the result is proved.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









Zacky

2,9931336




2,9931336








  • 1




    (+1) Very neat.
    – nospoon
    2 days ago














  • 1




    (+1) Very neat.
    – nospoon
    2 days ago








1




1




(+1) Very neat.
– nospoon
2 days ago




(+1) Very neat.
– nospoon
2 days ago










up vote
1
down vote













Through the dilogarithm/trilogarithm machinery it can be shown that



$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.






share|cite|improve this answer





















  • Thank you for the great answer. :) But I prefer a solution without brute force.
    – Kemono Chen
    2 days ago















up vote
1
down vote













Through the dilogarithm/trilogarithm machinery it can be shown that



$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.






share|cite|improve this answer





















  • Thank you for the great answer. :) But I prefer a solution without brute force.
    – Kemono Chen
    2 days ago













up vote
1
down vote










up vote
1
down vote









Through the dilogarithm/trilogarithm machinery it can be shown that



$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.






share|cite|improve this answer












Through the dilogarithm/trilogarithm machinery it can be shown that



$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$



$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 20 at 20:20









Jack D'Aurizio

283k33275653




283k33275653












  • Thank you for the great answer. :) But I prefer a solution without brute force.
    – Kemono Chen
    2 days ago


















  • Thank you for the great answer. :) But I prefer a solution without brute force.
    – Kemono Chen
    2 days ago
















Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago




Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006106%2fan-amm-like-integral-int-01-frac-arctan-xx-ln-frac1x231x2dx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

To store a contact into the json file from server.js file using a class in NodeJS

Redirect URL with Chrome Remote Debugging Android Devices

Dieringhausen