An AMM-like integral $int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx$
up vote
7
down vote
favorite
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
add a comment |
up vote
7
down vote
favorite
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago
add a comment |
up vote
7
down vote
favorite
up vote
7
down vote
favorite
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
How can we evaluate $$I=int_0^1frac{arctan x}xlnfrac{(1+x^2)^3}{(1+x)^2}dx=0?$$
I tried substitution $x=frac{1-t}{1+t}$ and got
$$I=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} arctan frac{t-1}{t+1}}{t^2-1}dt\
=int_0^1frac{2 ln frac{2 (t^2+1)^3}{(t+1)^4} (arctan t-fracpi4)}{t^2-1}dt$$
I'm able to evaluate $$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt$$
But I have no idea where to start with the rest one.
calculus integration definite-integrals
calculus integration definite-integrals
asked Nov 20 at 9:20
Kemono Chen
1,606330
1,606330
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago
add a comment |
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
2 days ago
add a comment |
up vote
1
down vote
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
2 days ago
add a comment |
up vote
3
down vote
accepted
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
1
(+1) Very neat.
– nospoon
2 days ago
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
$text{A solution by Cornel Ioan Valean.}$ The problem is similar to the problem $textbf{AMM 12054}.$ Using the well-known result in $textbf{4.535.1}$ from $text{Table of Integrals, Series and Products}$ by I.S. Gradshteyn and I.M. Ryzhik:
begin{equation*}
int_0^1 frac{arctan(y x)}{1+y^2x}textrm{d}x=frac{1}{2y^2}arctan(y)log(1+y^2),
end{equation*}
We have:
begin{equation*}
frac{1}{2}int_0^1frac{arctan(y)log(1+y^2)}{y}=int_0^1left(int_0^1 frac{yarctan(y x)}{1+y^2x}textrm{d}xright)textrm{d}yoverset{yx=t}{=}int_0^1left(int_0^y frac{arctan(t)}{1+y t}textrm{d}tright)textrm{d}y\
end{equation*}
begin{equation*}
=int_0^1left(int_t^1 frac{arctan(t)}{1+y t}textrm{d}yright)textrm{d}t=int_0^1frac{displaystyle arctan(y)logleft(frac{1+y}{1+y^2}right)}{y} textrm{d}y,
end{equation*}
And the result is proved.
edited 2 days ago
answered 2 days ago
Zacky
2,9931336
2,9931336
1
(+1) Very neat.
– nospoon
2 days ago
add a comment |
1
(+1) Very neat.
– nospoon
2 days ago
1
1
(+1) Very neat.
– nospoon
2 days ago
(+1) Very neat.
– nospoon
2 days ago
add a comment |
up vote
1
down vote
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
add a comment |
up vote
1
down vote
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
add a comment |
up vote
1
down vote
up vote
1
down vote
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
Through the dilogarithm/trilogarithm machinery it can be shown that
$$ int_{0}^{1}frac{log(1+i x)log(1+x)}{x},dx=\frac{pi K}{2}-frac{9ipi^3}{64}+3iKlog(2)-frac{3pi i}{16}log^2(2)+frac{5pi^2}{32}log(2)-frac{log^3(2)}{8}-frac{69}{16}zeta(3)+6,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log^2(1+i x)}{x},dx=\
-frac{pi K}{2}-frac{3ipi^3}{64}+iKlog(2)-frac{pi i}{16}log^2(2)+frac{5pi^2}{96}log(2)-frac{log^3(2)}{24}-frac{3}{16}zeta(3)+2,text{Li}_3left(tfrac{1+i}{2}right) $$
$$ int_{0}^{1}frac{log(1+ix)log(1-ix)}{x},dx= frac{pi K}{2}-frac{27}{32}zeta(3)$$
hence the claim follows by $arctan x=text{Im},log(1+ix)$ and $log(1+x^2)=log(1+ix)+log(1-ix)$.
answered Nov 20 at 20:20
Jack D'Aurizio
283k33275653
283k33275653
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
add a comment |
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
Thank you for the great answer. :) But I prefer a solution without brute force.
– Kemono Chen
2 days ago
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006106%2fan-amm-like-integral-int-01-frac-arctan-xx-ln-frac1x231x2dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just wondering: Why do you want to calculate this (by hand)
– klirk
Nov 20 at 20:38
@klirk Just an interest.
– Kemono Chen
Nov 21 at 0:18
$$int_0^1frac{ln frac{2 (t^2+1)^3}{(t+1)^4}}{t^2-1}dt=frac{pi^2}{48}$$
– user178256
2 days ago