Find the different principal values.
up vote
0
down vote
favorite
Show that the principal value of $i^{i^i}$ differs from the principal value of $i^{i*i}$.
And find the set of all values of the expression $i^{i^i}$.
complex-analysis
New contributor
add a comment |
up vote
0
down vote
favorite
Show that the principal value of $i^{i^i}$ differs from the principal value of $i^{i*i}$.
And find the set of all values of the expression $i^{i^i}$.
complex-analysis
New contributor
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Show that the principal value of $i^{i^i}$ differs from the principal value of $i^{i*i}$.
And find the set of all values of the expression $i^{i^i}$.
complex-analysis
New contributor
Show that the principal value of $i^{i^i}$ differs from the principal value of $i^{i*i}$.
And find the set of all values of the expression $i^{i^i}$.
complex-analysis
complex-analysis
New contributor
New contributor
New contributor
asked Nov 21 at 12:27
Peter van de Berg
168
168
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
First, $i^{i*i}=i^{-1}=frac{1}{i}=-i$.
Then, $i^{i^i}=i^{(e^{frac{pi}{2}i+2pi mi})^i}=i^{e^{-frac{pi}{2}-2pi m}}=(cis(frac{pi}{2}))^{(e^{-frac{pi}{2}-2pi m})}=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})$, using the notation $cis(x)=cos(x)+i*sin(x)$, and for some integer $m$. The principal value will be for $m=0$, so $i^{i^i}=cis(frac{pi}{2}e^{-frac{pi}{2}})$.
In order to show that there is no value for $m$ for which the two expressions are equal, we will suppose that the value $m=n$ will fulfill $cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})=-i$
$$-i=cis(frac{3pi}{2})=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi n})$$
$$frac{3pi}{2}=frac{pi}{2} e^{-frac{pi}{2}-2pi n} $$
$$3=e^{-frac{pi}{2}-2pi n}$$
$$frac{1}{3}=e^{frac{pi}{2}+2pi n}$$
$$n=-frac{frac{pi}{2}+ln(3)}{2pi}=-frac{1}{4}-frac{ln(3)}{2pi}$$
As $frac{ln(3)}{2pi}$ is irrational, $n$ must be irrational, and as such, cannot be equal to any integer $m$.
New contributor
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
First, $i^{i*i}=i^{-1}=frac{1}{i}=-i$.
Then, $i^{i^i}=i^{(e^{frac{pi}{2}i+2pi mi})^i}=i^{e^{-frac{pi}{2}-2pi m}}=(cis(frac{pi}{2}))^{(e^{-frac{pi}{2}-2pi m})}=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})$, using the notation $cis(x)=cos(x)+i*sin(x)$, and for some integer $m$. The principal value will be for $m=0$, so $i^{i^i}=cis(frac{pi}{2}e^{-frac{pi}{2}})$.
In order to show that there is no value for $m$ for which the two expressions are equal, we will suppose that the value $m=n$ will fulfill $cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})=-i$
$$-i=cis(frac{3pi}{2})=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi n})$$
$$frac{3pi}{2}=frac{pi}{2} e^{-frac{pi}{2}-2pi n} $$
$$3=e^{-frac{pi}{2}-2pi n}$$
$$frac{1}{3}=e^{frac{pi}{2}+2pi n}$$
$$n=-frac{frac{pi}{2}+ln(3)}{2pi}=-frac{1}{4}-frac{ln(3)}{2pi}$$
As $frac{ln(3)}{2pi}$ is irrational, $n$ must be irrational, and as such, cannot be equal to any integer $m$.
New contributor
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
add a comment |
up vote
0
down vote
accepted
First, $i^{i*i}=i^{-1}=frac{1}{i}=-i$.
Then, $i^{i^i}=i^{(e^{frac{pi}{2}i+2pi mi})^i}=i^{e^{-frac{pi}{2}-2pi m}}=(cis(frac{pi}{2}))^{(e^{-frac{pi}{2}-2pi m})}=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})$, using the notation $cis(x)=cos(x)+i*sin(x)$, and for some integer $m$. The principal value will be for $m=0$, so $i^{i^i}=cis(frac{pi}{2}e^{-frac{pi}{2}})$.
In order to show that there is no value for $m$ for which the two expressions are equal, we will suppose that the value $m=n$ will fulfill $cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})=-i$
$$-i=cis(frac{3pi}{2})=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi n})$$
$$frac{3pi}{2}=frac{pi}{2} e^{-frac{pi}{2}-2pi n} $$
$$3=e^{-frac{pi}{2}-2pi n}$$
$$frac{1}{3}=e^{frac{pi}{2}+2pi n}$$
$$n=-frac{frac{pi}{2}+ln(3)}{2pi}=-frac{1}{4}-frac{ln(3)}{2pi}$$
As $frac{ln(3)}{2pi}$ is irrational, $n$ must be irrational, and as such, cannot be equal to any integer $m$.
New contributor
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
First, $i^{i*i}=i^{-1}=frac{1}{i}=-i$.
Then, $i^{i^i}=i^{(e^{frac{pi}{2}i+2pi mi})^i}=i^{e^{-frac{pi}{2}-2pi m}}=(cis(frac{pi}{2}))^{(e^{-frac{pi}{2}-2pi m})}=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})$, using the notation $cis(x)=cos(x)+i*sin(x)$, and for some integer $m$. The principal value will be for $m=0$, so $i^{i^i}=cis(frac{pi}{2}e^{-frac{pi}{2}})$.
In order to show that there is no value for $m$ for which the two expressions are equal, we will suppose that the value $m=n$ will fulfill $cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})=-i$
$$-i=cis(frac{3pi}{2})=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi n})$$
$$frac{3pi}{2}=frac{pi}{2} e^{-frac{pi}{2}-2pi n} $$
$$3=e^{-frac{pi}{2}-2pi n}$$
$$frac{1}{3}=e^{frac{pi}{2}+2pi n}$$
$$n=-frac{frac{pi}{2}+ln(3)}{2pi}=-frac{1}{4}-frac{ln(3)}{2pi}$$
As $frac{ln(3)}{2pi}$ is irrational, $n$ must be irrational, and as such, cannot be equal to any integer $m$.
New contributor
First, $i^{i*i}=i^{-1}=frac{1}{i}=-i$.
Then, $i^{i^i}=i^{(e^{frac{pi}{2}i+2pi mi})^i}=i^{e^{-frac{pi}{2}-2pi m}}=(cis(frac{pi}{2}))^{(e^{-frac{pi}{2}-2pi m})}=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})$, using the notation $cis(x)=cos(x)+i*sin(x)$, and for some integer $m$. The principal value will be for $m=0$, so $i^{i^i}=cis(frac{pi}{2}e^{-frac{pi}{2}})$.
In order to show that there is no value for $m$ for which the two expressions are equal, we will suppose that the value $m=n$ will fulfill $cis(frac{pi}{2}e^{-frac{pi}{2}-2pi m})=-i$
$$-i=cis(frac{3pi}{2})=cis(frac{pi}{2}e^{-frac{pi}{2}-2pi n})$$
$$frac{3pi}{2}=frac{pi}{2} e^{-frac{pi}{2}-2pi n} $$
$$3=e^{-frac{pi}{2}-2pi n}$$
$$frac{1}{3}=e^{frac{pi}{2}+2pi n}$$
$$n=-frac{frac{pi}{2}+ln(3)}{2pi}=-frac{1}{4}-frac{ln(3)}{2pi}$$
As $frac{ln(3)}{2pi}$ is irrational, $n$ must be irrational, and as such, cannot be equal to any integer $m$.
New contributor
New contributor
answered Nov 21 at 13:08
MoKo19
813
813
New contributor
New contributor
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
add a comment |
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
Thankyou so much! This will help me
– Peter van de Berg
Nov 22 at 12:21
add a comment |
Peter van de Berg is a new contributor. Be nice, and check out our Code of Conduct.
Peter van de Berg is a new contributor. Be nice, and check out our Code of Conduct.
Peter van de Berg is a new contributor. Be nice, and check out our Code of Conduct.
Peter van de Berg is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007659%2ffind-the-different-principal-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown