$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]-left[1^{1^p}2^{2^p}cdots n^{n^p}right]$ converge?











up vote
5
down vote

favorite
1












This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.



Let $p$ be a nonnegative real number. Study the convergence of the sequence



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$



Where $n$ is a positive integer.



Maybe it is useful to know:



$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$



Attempt



Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:



Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then



$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$



But by ref{1}, we have



$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$



And we also have



$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$



Thus,



$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$



Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following



$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$



Where we used ref{1} in the last equality.










share|cite|improve this question


















  • 1




    You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
    – Paramanand Singh
    Nov 21 at 12:41










  • @ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
    – Rafael Deiga
    Nov 21 at 13:34












  • Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
    – Paramanand Singh
    Nov 21 at 14:13















up vote
5
down vote

favorite
1












This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.



Let $p$ be a nonnegative real number. Study the convergence of the sequence



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$



Where $n$ is a positive integer.



Maybe it is useful to know:



$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$



Attempt



Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:



Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then



$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$



But by ref{1}, we have



$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$



And we also have



$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$



Thus,



$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$



Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following



$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$



Where we used ref{1} in the last equality.










share|cite|improve this question


















  • 1




    You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
    – Paramanand Singh
    Nov 21 at 12:41










  • @ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
    – Rafael Deiga
    Nov 21 at 13:34












  • Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
    – Paramanand Singh
    Nov 21 at 14:13













up vote
5
down vote

favorite
1









up vote
5
down vote

favorite
1






1





This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.



Let $p$ be a nonnegative real number. Study the convergence of the sequence



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$



Where $n$ is a positive integer.



Maybe it is useful to know:



$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$



Attempt



Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:



Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then



$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$



But by ref{1}, we have



$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$



And we also have



$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$



Thus,



$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$



Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following



$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$



Where we used ref{1} in the last equality.










share|cite|improve this question













This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.



Let $p$ be a nonnegative real number. Study the convergence of the sequence



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$



Where $n$ is a positive integer.



Maybe it is useful to know:



$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$



Attempt



Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:



Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then



$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$



But by ref{1}, we have



$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$



And we also have



$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$



Thus,



$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$



Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following



$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$



Where we used ref{1} in the last equality.







real-analysis sequences-and-series limits contest-math






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 21 at 12:05









Rafael Deiga

657311




657311








  • 1




    You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
    – Paramanand Singh
    Nov 21 at 12:41










  • @ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
    – Rafael Deiga
    Nov 21 at 13:34












  • Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
    – Paramanand Singh
    Nov 21 at 14:13














  • 1




    You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
    – Paramanand Singh
    Nov 21 at 12:41










  • @ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
    – Rafael Deiga
    Nov 21 at 13:34












  • Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
    – Paramanand Singh
    Nov 21 at 14:13








1




1




You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41




You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41












@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34






@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34














Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13




Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










We have that



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$



with



$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$



indeed



$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$



$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$



therefore



$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$



which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$



$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$






share|cite|improve this answer























  • Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
    – Rafael Deiga
    Nov 21 at 15:33










  • @RafaelDeiga Yes of course! I fix that, thanks!
    – gimusi
    Nov 21 at 15:35










  • You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
    – Gabriel Romon
    Nov 21 at 15:46










  • Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
    – Rafael Deiga
    Nov 21 at 15:48










  • @GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
    – gimusi
    Nov 21 at 15:49











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007638%2fx-n-left11p22p-cdots-n1n1p-right-left11p22p-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










We have that



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$



with



$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$



indeed



$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$



$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$



therefore



$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$



which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$



$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$






share|cite|improve this answer























  • Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
    – Rafael Deiga
    Nov 21 at 15:33










  • @RafaelDeiga Yes of course! I fix that, thanks!
    – gimusi
    Nov 21 at 15:35










  • You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
    – Gabriel Romon
    Nov 21 at 15:46










  • Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
    – Rafael Deiga
    Nov 21 at 15:48










  • @GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
    – gimusi
    Nov 21 at 15:49















up vote
2
down vote



accepted










We have that



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$



with



$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$



indeed



$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$



$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$



therefore



$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$



which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$



$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$






share|cite|improve this answer























  • Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
    – Rafael Deiga
    Nov 21 at 15:33










  • @RafaelDeiga Yes of course! I fix that, thanks!
    – gimusi
    Nov 21 at 15:35










  • You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
    – Gabriel Romon
    Nov 21 at 15:46










  • Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
    – Rafael Deiga
    Nov 21 at 15:48










  • @GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
    – gimusi
    Nov 21 at 15:49













up vote
2
down vote



accepted







up vote
2
down vote



accepted






We have that



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$



with



$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$



indeed



$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$



$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$



therefore



$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$



which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$



$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$






share|cite|improve this answer














We have that



$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$



with



$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$



indeed



$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$



$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$



therefore



$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$



which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$



$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 21 at 15:56

























answered Nov 21 at 14:33









gimusi

87.7k74393




87.7k74393












  • Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
    – Rafael Deiga
    Nov 21 at 15:33










  • @RafaelDeiga Yes of course! I fix that, thanks!
    – gimusi
    Nov 21 at 15:35










  • You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
    – Gabriel Romon
    Nov 21 at 15:46










  • Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
    – Rafael Deiga
    Nov 21 at 15:48










  • @GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
    – gimusi
    Nov 21 at 15:49


















  • Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
    – Rafael Deiga
    Nov 21 at 15:33










  • @RafaelDeiga Yes of course! I fix that, thanks!
    – gimusi
    Nov 21 at 15:35










  • You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
    – Gabriel Romon
    Nov 21 at 15:46










  • Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
    – Rafael Deiga
    Nov 21 at 15:48










  • @GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
    – gimusi
    Nov 21 at 15:49
















Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33




Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33












@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35




@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35












You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46




You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46












Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48




Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48












@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49




@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007638%2fx-n-left11p22p-cdots-n1n1p-right-left11p22p-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Wiesbaden

Marschland

Dieringhausen