$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]-left[1^{1^p}2^{2^p}cdots n^{n^p}right]$ converge?
Multi tool use
up vote
5
down vote
favorite
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
add a comment |
up vote
5
down vote
favorite
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
This problem comes from the Titu Andreescu's book Problems in Real Analysis - Chapter 1, page 9.
Let $p$ be a nonnegative real number. Study the convergence of the sequence
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$$
Where $n$ is a positive integer.
Maybe it is useful to know:
$$ lim_{n to infty} frac{left(1^{1^p}2^{2^p}cdots n^{n^p}right)^{1/n^{p+1}}}{n^{1/(p+1)}} = e^{-1/(p+1)^2}label{1}tag{1}$$
Attempt
Just before this exercise, the book solves the case $p =0$ in an example. Using the same reasoning of the example, I did the following:
Define $a_n= left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}$ and $b_n = a_{n+1}/a_n$, then
$$x_n = a_{n+1}-a_{n} = a_n(b_n-1) = frac{a_n}{n^{1/(p+1)}}frac{b_n-1}{ln b_n}ln b_n^{n^{1/(p+1)}}$$
But by ref{1}, we have
$$ lim_{n to infty} frac{a_n}{n^{1/(p+1)}} = e^{-1/(p+1)^2}$$
And we also have
$$ lim_{n to infty} b_n = lim_{n to infty} frac{a_{n+1}}{a_n} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}frac{(n+1)^{1/(p+1)}}{n^{1/(p+1)}} = lim_{n to infty} frac{a_{n+1}}{(n+1)^{1/(p+1)}}frac{n^{1/(p+1)}}{a_n}left(1+frac{1}{n}right)^{1/(p+1)} = 1$$
Thus,
$$ lim_{n to infty} frac{b_n-1}{ln b_n} = lim_{n to infty} left(frac{ln b_n}{b_n-1}right)^{-1} = left[left(frac{d}{dx}ln x right)|_{x=1}right]^{-1}= 1 $$
Since $b_n to 1$. So, we just need to analyze the convergence of $ln b_n^{n^{1/(p+1)}}$, what I couldn't do! However, in the case $p=0$, the book does the following
$$lim_{n to infty} b_n^n = lim_{n to infty} left(frac{(n+1)!^{1/(n+1)}}{n!^{1/n}}right)^n = lim_{n to infty} frac{(n+1)!}{n!}frac{1}{(n+1)!^{1/(n+1)}} = lim_{n to infty} frac{n+1}{(n+1)!^{1/(n+1)}} = e $$
Where we used ref{1} in the last equality.
real-analysis sequences-and-series limits contest-math
real-analysis sequences-and-series limits contest-math
asked Nov 21 at 12:05
Rafael Deiga
657311
657311
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13
add a comment |
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13
1
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
|
show 5 more comments
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
|
show 5 more comments
up vote
2
down vote
accepted
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
|
show 5 more comments
up vote
2
down vote
accepted
up vote
2
down vote
accepted
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
We have that
$$x_n = left[1^{1^p}2^{2^p}cdots (n+1)^{(n+1)^p}right]^{1/(n+1)^{p+1}}-left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=a_{n+1}-a_n$$
with
$$a_n=left[1^{1^p}2^{2^p}cdots n^{n^p}right]^{1/n^{p+1}}=e^{frac{sum_{k=1}^{n}k^p log k}{n^{p+1}}}sim cn^{frac1{p+1}}$$
indeed
$$frac{sum_{k=1}^{n}k^p log k}{n^{p+1}} =frac1nsum_{k=1}^{n}left(frac knright)^p left(log left(frac knright) +log nright)=$$
$$=int_0^1 x^p log x dx+frac{log n}{n^{p+1}}sum_{k=1}^{n} k^p=frac{log n}{p+1}+I+Oleft(frac{log n}nright)$$
therefore
$$a_{n+1}-a_nsim ccdot left[(n+1)^{frac1{p+1}}-n^{frac1{p+1}}right]$$
which converges for any $p>0$ indeed let $a=frac1{p+1}in (0,1)$
$$(n+1)^a-n^a=n^a(1+1/n)^a-n^asimfrac{a}{n^{1-a}} to 0$$
edited Nov 21 at 15:56
answered Nov 21 at 14:33
gimusi
87.7k74393
87.7k74393
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
|
show 5 more comments
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
Before $sim frac{log n}{p+1}$ should be $k^p$ instead of $k^n$?
– Rafael Deiga
Nov 21 at 15:33
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
@RafaelDeiga Yes of course! I fix that, thanks!
– gimusi
Nov 21 at 15:35
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
You can't subtract (or add) equivalence relations out of thin air. Be more precise and write down the error terms.
– Gabriel Romon
Nov 21 at 15:46
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
Yeah, i m a bit lost because i don't know if the errors go to zero when $n$ goes to infinity.
– Rafael Deiga
Nov 21 at 15:48
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
@GabrielRomon Yes you are right, my aim is to make a simple exposure of the key ideas and let the pleasure to the asker (or readers) to refine the details. I can add more details if requested.
– gimusi
Nov 21 at 15:49
|
show 5 more comments
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007638%2fx-n-left11p22p-cdots-n1n1p-right-left11p22p-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
ZMv5iGIE HSWMGZjgUbVSIM NNFG3nvX9kxY8s exEY,q4ZQrRNjBj,yHvP,QrIY dMhUGGfB
1
You can try Cesaro-Stolz on $(log b_{n})/n^{-a}$ where $a=1/(p+1)leq 1$.
– Paramanand Singh
Nov 21 at 12:41
@ParamanandSingh How can I use this? I tried and get again the limit $infty.0$ for $p>0$.
– Rafael Deiga
Nov 21 at 13:34
Well Cesaro-Stolz does complicate the expression and I guess one needs some other kind of simplification here.
– Paramanand Singh
Nov 21 at 14:13