Isomorphic ring $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$











up vote
1
down vote

favorite












I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



So I choose $I = (x), J = (x^2 + 1)$



What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



    $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



    So I choose $I = (x), J = (x^2 + 1)$



    What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



    Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



      $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



      So I choose $I = (x), J = (x^2 + 1)$



      What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



      Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?










      share|cite|improve this question















      I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem



      $mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$



      So I choose $I = (x), J = (x^2 + 1)$



      What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)



      Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?







      abstract-algebra ring-theory ideals ring-isomorphism






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 21 at 12:50









      Zvi

      3,785326




      3,785326










      asked Nov 21 at 11:29









      Hans

      567




      567






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote













          To find an explicit isomorphism, we note that
          $$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
          $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
          Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
          $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
          The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
          $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
          Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
          $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
          and
          $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote













            To find an explicit isomorphism, we note that
            $$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
            $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
            Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
            $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
            The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
            $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
            Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
            $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
            and
            $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






            share|cite|improve this answer

























              up vote
              2
              down vote













              To find an explicit isomorphism, we note that
              $$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
              $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
              Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
              $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
              The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
              $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
              Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
              $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
              and
              $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






              share|cite|improve this answer























                up vote
                2
                down vote










                up vote
                2
                down vote









                To find an explicit isomorphism, we note that
                $$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
                $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
                Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
                $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
                The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
                $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
                Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
                $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
                and
                $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$






                share|cite|improve this answer












                To find an explicit isomorphism, we note that
                $$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
                $$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
                Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
                $$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
                The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
                $$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
                Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
                $$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
                and
                $$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 21 at 11:48









                Zvi

                3,785326




                3,785326






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen