Isomorphic ring $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
add a comment |
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
I want to prove an isomorphism of the form $mathbb{Q}[x]/(x^3+x) cong mathbb{Q} times mathbb{Q}[x]/(x^2+1)$. I want to use the Chinese Remainder Theorem
$mathbb{Q}[x]/(x^3+x) = mathbb{Q}[x]/(x(x^2+1))$
So I choose $I = (x), J = (x^2 + 1)$
What I have to show first is that $I$, $J$ are coprime. (How can I do this? Because it feels trivial)
Secondly I have to show that $mathbb{Q}[x]/(x) = mathbb{Q}$. My question is: How can I prove this?
abstract-algebra ring-theory ideals ring-isomorphism
abstract-algebra ring-theory ideals ring-isomorphism
edited Nov 21 at 12:50
Zvi
3,785326
3,785326
asked Nov 21 at 11:29
Hans
567
567
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
add a comment |
up vote
2
down vote
up vote
2
down vote
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
To find an explicit isomorphism, we note that
$$1=(-x)cdot x+1cdot(x^2+1).$$ This proves also that $I=(x)$ and $J=(x^2+1)$ are coprime ideals. So, for all $p(x)inmathbb{Q}[x]$, we can write
$$p(x)=big(-xp(x)big)cdot x+p(x)cdot (x^2+1)=(x^2+1)p(x)-x^2p(x).$$
Therefore, a good isomorphism $varphi:Bbb{Q}/big(x(x^2+1)big)to big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)$ is given by
$$varphibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(x)operatorname{mod} x,p(x)operatorname{mod} (x^2+1)big).$$
The inverse of $varphi$ is $psi: big(mathbb{Q}[x]/(x)big)oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big)$ given by
$$psibig(a(x)operatorname{mod} x,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)a(x)-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
Note that there exists an isomorphism $mathbb{Q}[x]/(x)tomathbb{Q}$ sending $big(f(x)operatorname{mod} xbig)mapsto f(0)$. So, you can rewrite $varphi$ and $psi$ as $$Phi:Bbb{Q}/big(x(x^2+1)big)to mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)$$ and $$Psi:mathbb{Q}oplus big(mathbb{Q}/(x^2+1)big)to Bbb{Q}/big(x(x^2+1)big),$$ which are given by
$$Phibig(p(x)operatorname{mod}x(x^2+1)big)=big(p(0),p(x)operatorname{mod} (x^2+1)big)$$
and
$$Psibig(t,b(x)operatorname{mod}(x^2+1)big)=Big((x^2+1)t-x^2b(x) Big)operatorname{mod} x(x^2+1).$$
answered Nov 21 at 11:48
Zvi
3,785326
3,785326
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007596%2fisomorphic-ring-mathbbqx-x3x-cong-mathbbq-times-mathbbqx-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown