Closed form for $q_k(0,0)$ from recurrence











up vote
0
down vote

favorite












We have
$$p_0(n,m)=begin{cases}
0,&text{$n=m=0$}\
(n-1)!,&text{$n>0, m=0$}\
0,&text{$ngeqslant0, m>0$}
end{cases}$$

$$q_0(n,m)=0, ngeqslant0, mgeqslant0$$
and
$$p_k(n,m)=begin{cases}
0,&text{$n=0, mgeqslant0, k>0$}\
sumlimits_{d=0}^{n-1}frac{(n-1)!}{d!}q_k(d,m),&text{$n>0, mgeqslant0, k>0$}
end{cases}$$

$$q_k(n,m)=p_{k-1}(n+1,m+1)+p_{k-1}(m+1,n), ngeqslant0, mgeqslant0, k>0$$
so when $nne0$ for $p_k(n,m)$ and $q_1(n,m)$, and when $ngeqslant0$ for $q_k(n,m)$ with $k>0$, first three cases are
$$p_1(n,m)=(n-1)!m!, q_1(n,m)=0$$
$$p_2(n,m)=2n!m!(m+2), q_2(n,m)=n!m!(m+2)$$
$$p_3(n,m)=3n!(m+1)!((n+1)(m+4)+2), q_3(n,m)=2n!(m+1)!((n+1)(m+4)+1)$$
also
$$q_1(0,m)=m!, mgeqslant0$$
General interest is to find $q_k(0,0)$ for which we need
$$q_k(0,0)=p_{k-1}(1,1)+p_{k-1}(1,0)=(k-1)(q_{k-1}(0,1)+q_{k-1}(0,0))$$
Is there closed form for it?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    We have
    $$p_0(n,m)=begin{cases}
    0,&text{$n=m=0$}\
    (n-1)!,&text{$n>0, m=0$}\
    0,&text{$ngeqslant0, m>0$}
    end{cases}$$

    $$q_0(n,m)=0, ngeqslant0, mgeqslant0$$
    and
    $$p_k(n,m)=begin{cases}
    0,&text{$n=0, mgeqslant0, k>0$}\
    sumlimits_{d=0}^{n-1}frac{(n-1)!}{d!}q_k(d,m),&text{$n>0, mgeqslant0, k>0$}
    end{cases}$$

    $$q_k(n,m)=p_{k-1}(n+1,m+1)+p_{k-1}(m+1,n), ngeqslant0, mgeqslant0, k>0$$
    so when $nne0$ for $p_k(n,m)$ and $q_1(n,m)$, and when $ngeqslant0$ for $q_k(n,m)$ with $k>0$, first three cases are
    $$p_1(n,m)=(n-1)!m!, q_1(n,m)=0$$
    $$p_2(n,m)=2n!m!(m+2), q_2(n,m)=n!m!(m+2)$$
    $$p_3(n,m)=3n!(m+1)!((n+1)(m+4)+2), q_3(n,m)=2n!(m+1)!((n+1)(m+4)+1)$$
    also
    $$q_1(0,m)=m!, mgeqslant0$$
    General interest is to find $q_k(0,0)$ for which we need
    $$q_k(0,0)=p_{k-1}(1,1)+p_{k-1}(1,0)=(k-1)(q_{k-1}(0,1)+q_{k-1}(0,0))$$
    Is there closed form for it?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      We have
      $$p_0(n,m)=begin{cases}
      0,&text{$n=m=0$}\
      (n-1)!,&text{$n>0, m=0$}\
      0,&text{$ngeqslant0, m>0$}
      end{cases}$$

      $$q_0(n,m)=0, ngeqslant0, mgeqslant0$$
      and
      $$p_k(n,m)=begin{cases}
      0,&text{$n=0, mgeqslant0, k>0$}\
      sumlimits_{d=0}^{n-1}frac{(n-1)!}{d!}q_k(d,m),&text{$n>0, mgeqslant0, k>0$}
      end{cases}$$

      $$q_k(n,m)=p_{k-1}(n+1,m+1)+p_{k-1}(m+1,n), ngeqslant0, mgeqslant0, k>0$$
      so when $nne0$ for $p_k(n,m)$ and $q_1(n,m)$, and when $ngeqslant0$ for $q_k(n,m)$ with $k>0$, first three cases are
      $$p_1(n,m)=(n-1)!m!, q_1(n,m)=0$$
      $$p_2(n,m)=2n!m!(m+2), q_2(n,m)=n!m!(m+2)$$
      $$p_3(n,m)=3n!(m+1)!((n+1)(m+4)+2), q_3(n,m)=2n!(m+1)!((n+1)(m+4)+1)$$
      also
      $$q_1(0,m)=m!, mgeqslant0$$
      General interest is to find $q_k(0,0)$ for which we need
      $$q_k(0,0)=p_{k-1}(1,1)+p_{k-1}(1,0)=(k-1)(q_{k-1}(0,1)+q_{k-1}(0,0))$$
      Is there closed form for it?










      share|cite|improve this question















      We have
      $$p_0(n,m)=begin{cases}
      0,&text{$n=m=0$}\
      (n-1)!,&text{$n>0, m=0$}\
      0,&text{$ngeqslant0, m>0$}
      end{cases}$$

      $$q_0(n,m)=0, ngeqslant0, mgeqslant0$$
      and
      $$p_k(n,m)=begin{cases}
      0,&text{$n=0, mgeqslant0, k>0$}\
      sumlimits_{d=0}^{n-1}frac{(n-1)!}{d!}q_k(d,m),&text{$n>0, mgeqslant0, k>0$}
      end{cases}$$

      $$q_k(n,m)=p_{k-1}(n+1,m+1)+p_{k-1}(m+1,n), ngeqslant0, mgeqslant0, k>0$$
      so when $nne0$ for $p_k(n,m)$ and $q_1(n,m)$, and when $ngeqslant0$ for $q_k(n,m)$ with $k>0$, first three cases are
      $$p_1(n,m)=(n-1)!m!, q_1(n,m)=0$$
      $$p_2(n,m)=2n!m!(m+2), q_2(n,m)=n!m!(m+2)$$
      $$p_3(n,m)=3n!(m+1)!((n+1)(m+4)+2), q_3(n,m)=2n!(m+1)!((n+1)(m+4)+1)$$
      also
      $$q_1(0,m)=m!, mgeqslant0$$
      General interest is to find $q_k(0,0)$ for which we need
      $$q_k(0,0)=p_{k-1}(1,1)+p_{k-1}(1,0)=(k-1)(q_{k-1}(0,1)+q_{k-1}(0,0))$$
      Is there closed form for it?







      combinatorics permutations recurrence-relations factorial closed-form






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 23 at 2:01

























      asked Nov 21 at 3:20









      user514787

      676110




      676110



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007212%2fclosed-form-for-q-k0-0-from-recurrence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007212%2fclosed-form-for-q-k0-0-from-recurrence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen