Find $alpha$,$beta$ if $lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x -beta] = 0$











up vote
2
down vote

favorite
1












Here is my approach.
Consider;
$$ax^2 + 2bx + c = 0$$
or;
$$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
Hence;
$$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
$$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
For large values of $x$ we may apply the binomial approximation, so that;
$$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
$$=x + frac {b}{a} + frac {c}{4ax}$$
As $x→∞$ the final term in the above expression vanishes. Hence;
$$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
gives;
$$x+frac {b}{a} - alpha x - beta = 0,$$
or;
$$(1-alpha)x + (frac {b}{a} - beta) = 0$$
As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
$$alpha = 1, beta = frac {b}{a}$$
But I doubt it is hardly correct. Is there any better method for the problem?










share|cite|improve this question


























    up vote
    2
    down vote

    favorite
    1












    Here is my approach.
    Consider;
    $$ax^2 + 2bx + c = 0$$
    or;
    $$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
    Hence;
    $$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
    $$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
    For large values of $x$ we may apply the binomial approximation, so that;
    $$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
    $$=x + frac {b}{a} + frac {c}{4ax}$$
    As $x→∞$ the final term in the above expression vanishes. Hence;
    $$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
    gives;
    $$x+frac {b}{a} - alpha x - beta = 0,$$
    or;
    $$(1-alpha)x + (frac {b}{a} - beta) = 0$$
    As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
    $$alpha = 1, beta = frac {b}{a}$$
    But I doubt it is hardly correct. Is there any better method for the problem?










    share|cite|improve this question
























      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1





      Here is my approach.
      Consider;
      $$ax^2 + 2bx + c = 0$$
      or;
      $$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
      Hence;
      $$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
      $$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
      For large values of $x$ we may apply the binomial approximation, so that;
      $$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
      $$=x + frac {b}{a} + frac {c}{4ax}$$
      As $x→∞$ the final term in the above expression vanishes. Hence;
      $$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
      gives;
      $$x+frac {b}{a} - alpha x - beta = 0,$$
      or;
      $$(1-alpha)x + (frac {b}{a} - beta) = 0$$
      As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
      $$alpha = 1, beta = frac {b}{a}$$
      But I doubt it is hardly correct. Is there any better method for the problem?










      share|cite|improve this question













      Here is my approach.
      Consider;
      $$ax^2 + 2bx + c = 0$$
      or;
      $$ x_{±} = frac {-b±sqrt {b^2-ac}}{a} = frac {-b±sqrt D}{a}$$
      Hence;
      $$sqrt {ax^2+2bx+c} = sqrt {(x+frac {b-√D}{a})(x+frac {b+√D}{a})}$$
      $$=xsqrt {(1+frac {b-√D}{ax})(1+frac {b+√D}{ax})}$$
      For large values of $x$ we may apply the binomial approximation, so that;
      $$sqrt {ax^2+2bx+c} ≈ x(1+frac {b-√D}{2ax})(1+frac {b+√D}{2ax})$$
      $$=x + frac {b}{a} + frac {c}{4ax}$$
      As $x→∞$ the final term in the above expression vanishes. Hence;
      $$lim_{x→∞}[ sqrt {ax^2+2bx+c} - alpha x - beta ] = 0,$$
      gives;
      $$x+frac {b}{a} - alpha x - beta = 0,$$
      or;
      $$(1-alpha)x + (frac {b}{a} - beta) = 0$$
      As $x→∞$, $1-alpha$ must be $0$ for the former term to vanish, hence,
      $$alpha = 1, beta = frac {b}{a}$$
      But I doubt it is hardly correct. Is there any better method for the problem?







      limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 21 at 5:35









      Awe Kumar Jha

      3189




      3189






















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$



          $$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$



          $(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$



          As the denominator $to0,$ $$a-alpha^2=0$$



          as the denominator is $O(h)$ $$b-2alphabeta=0$$






          share|cite|improve this answer




























            up vote
            2
            down vote













            Another approach could be Taylor series
            $$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
            $$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
            x}+Oleft(frac{1}{x^2}right)$$






            share|cite|improve this answer





















            • I like THIS approach! (+1)
              – Robert Z
              Nov 21 at 6:39


















            up vote
            1
            down vote













            You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$



            That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$






            share|cite|improve this answer





















            • $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
              – lab bhattacharjee
              Nov 21 at 6:35











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007306%2ffind-alpha-beta-if-lim-x%25e2%2586%2592%25e2%2588%259e-sqrt-ax22bxc-alpha-x-beta-0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote



            accepted










            Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$



            $$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$



            $(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$



            As the denominator $to0,$ $$a-alpha^2=0$$



            as the denominator is $O(h)$ $$b-2alphabeta=0$$






            share|cite|improve this answer

























              up vote
              2
              down vote



              accepted










              Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$



              $$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$



              $(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$



              As the denominator $to0,$ $$a-alpha^2=0$$



              as the denominator is $O(h)$ $$b-2alphabeta=0$$






              share|cite|improve this answer























                up vote
                2
                down vote



                accepted







                up vote
                2
                down vote



                accepted






                Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$



                $$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$



                $(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$



                As the denominator $to0,$ $$a-alpha^2=0$$



                as the denominator is $O(h)$ $$b-2alphabeta=0$$






                share|cite|improve this answer












                Set $1/x=h$ to find $$lim_{hto0^+}dfrac{sqrt{a+bh+ch^2}-(alpha+beta h)}h$$



                $$=lim_{hto0^+}dfrac{(a+bh+ch^2)-(alpha+beta h)^2}hcdotlim_{hto0^+}dfrac1{sqrt{a+bh+ch^2}-(alpha+beta h)}$$



                $(a+bh+ch^2)-(alpha+beta h)^2=a-alpha^2+h(b-2alphabeta)+h^2(c-beta^2)$



                As the denominator $to0,$ $$a-alpha^2=0$$



                as the denominator is $O(h)$ $$b-2alphabeta=0$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 21 at 5:42









                lab bhattacharjee

                220k15154271




                220k15154271






















                    up vote
                    2
                    down vote













                    Another approach could be Taylor series
                    $$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
                    $$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
                    x}+Oleft(frac{1}{x^2}right)$$






                    share|cite|improve this answer





















                    • I like THIS approach! (+1)
                      – Robert Z
                      Nov 21 at 6:39















                    up vote
                    2
                    down vote













                    Another approach could be Taylor series
                    $$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
                    $$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
                    x}+Oleft(frac{1}{x^2}right)$$






                    share|cite|improve this answer





















                    • I like THIS approach! (+1)
                      – Robert Z
                      Nov 21 at 6:39













                    up vote
                    2
                    down vote










                    up vote
                    2
                    down vote









                    Another approach could be Taylor series
                    $$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
                    $$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
                    x}+Oleft(frac{1}{x^2}right)$$






                    share|cite|improve this answer












                    Another approach could be Taylor series
                    $$sqrt{a x^2+2 b x+c}=x sqrt{a+frac{2 b}{x}+frac{c}{x^2} }$$ So, for large $x$,
                    $$sqrt{a x^2+2 b x+c}=sqrt{a} x+frac{b}{sqrt{a}}+frac{a c-b^2}{2 a^{3/2}
                    x}+Oleft(frac{1}{x^2}right)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 21 at 6:18









                    Claude Leibovici

                    116k1156131




                    116k1156131












                    • I like THIS approach! (+1)
                      – Robert Z
                      Nov 21 at 6:39


















                    • I like THIS approach! (+1)
                      – Robert Z
                      Nov 21 at 6:39
















                    I like THIS approach! (+1)
                    – Robert Z
                    Nov 21 at 6:39




                    I like THIS approach! (+1)
                    – Robert Z
                    Nov 21 at 6:39










                    up vote
                    1
                    down vote













                    You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$



                    That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$






                    share|cite|improve this answer





















                    • $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                      – lab bhattacharjee
                      Nov 21 at 6:35















                    up vote
                    1
                    down vote













                    You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$



                    That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$






                    share|cite|improve this answer





















                    • $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                      – lab bhattacharjee
                      Nov 21 at 6:35













                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$



                    That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$






                    share|cite|improve this answer












                    You want $$ lim _{xto infty }ax^2+2bx+c -(alpha x +beta )^2=0$$



                    That implies $$ a= alpha ^2, c=beta ^2, b=alpha beta$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 21 at 6:18









                    Mohammad Riazi-Kermani

                    40.3k41958




                    40.3k41958












                    • $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                      – lab bhattacharjee
                      Nov 21 at 6:35


















                    • $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                      – lab bhattacharjee
                      Nov 21 at 6:35
















                    $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                    – lab bhattacharjee
                    Nov 21 at 6:35




                    $b=2alphabeta$ right? and $c-beta^2$ needs to be finite
                    – lab bhattacharjee
                    Nov 21 at 6:35


















                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007306%2ffind-alpha-beta-if-lim-x%25e2%2586%2592%25e2%2588%259e-sqrt-ax22bxc-alpha-x-beta-0%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Wiesbaden

                    Marschland

                    Dieringhausen